180 likes | 284 Views
How Does Turing Machine Think? Example Chaoyang Li. RULE’S If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT! Let’s see how they are carried out on a piece of paper that contains 111101:. Turing Machine-A Thinking Machine.
E N D
How Does Turing Machine Think? ExampleChaoyang Li RULE’S If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT! Let’s see how they are carried out on a piece of paper that contains 111101:
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
So the successor’s output on 111101 was 000011 which is the reverse binary representation of 111101. Similarly, the successor of 127 should be 128:
Turing Machine-A Thinking Machine If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT!
If read 1, write 0, go right, repeat. If read 0, write 1, HALT! If read , write 1, HALT! So the successor’s output on 1111111 was 10000000 which is the reverse binary representation of 1111111.