1 / 21

TEMA 1 CARACTERIZACIÓN TEMPORAL DE SEÑALES

TEMA 1 CARACTERIZACIÓN TEMPORAL DE SEÑALES. INTRODUCCIÓN. El Proceso Digital de Señales trata de la representación de señales por secuencias de números y el posterior proceso de tales secuencias. Objetivos: 1) Estimar los parámetros característicos de la señal.

mirit
Download Presentation

TEMA 1 CARACTERIZACIÓN TEMPORAL DE SEÑALES

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TEMA 1 CARACTERIZACIÓN TEMPORAL DE SEÑALES

  2. INTRODUCCIÓN • El Proceso Digital de Señales trata de la representación de señales por secuencias de números y el posterior proceso de tales secuencias. • Objetivos: 1) Estimar los parámetros característicos de la señal. 2) Transformar la señal en otra. • Aplicaciones: • Ingeniería Biomédica • Telecomunicaciones • Acústica, Sonar, Radar • Física Nuclear • Sismología • Proceso Digital de Imágenes

  3. INTRODUCCIÓN • SEÑAL:  Es una función que contiene información sobre el estado ó comportamiento de un sistema físico. • Según el rango de variabilidad de la variable independiente, la señal puede ser:         1) Contínua en el tiempo f(t), t ∈ [a,b]         2) Discreta en el tiempo: f(t) ∈ {t₀,t₁,...,tn} • Según el rango de variabilidad de la amplitud, la señal puede ser: 1) Contínua en amplitud 2) Discreta en amplitud Las Señales Digitales son discretas en tiempo y en amplitud.

  4. INTRODUCCIÓN DESCRIPCION DE SEÑALES EN EL DOMINIO TEMPORAL Valor Medio (en un intervalo T): Valor Medio Temporal: Valor Medio Cuadrático: Varianza:

  5. SEÑALES DISCRETAS ELEMENTALES • Las señales discretas se caracterizan por estar definidas solamente para un conjunto numerable de valores de la variable independiente. • Se representan matemáticamente por secuencias numéricas. • En la práctica suelen provenir de un muestreo periódico de una señal analógica. • Las señales digitales se obtienen a partir de la cuantización de las señales discretas resultantes del muestreo de las señales analógicas.                 , siendo T el periodo de muestreo

  6. SEÑALES DISCRETAS ELEMENTALES SECUENCIAS DISCRETAS ELEMENTALES Impulso unitario discreto  d(n)=1 (Si n=0) , d(n)=0 (Si n#0)    Escalón unitario discreto:    u(n)=1 (Si n>=0) , u(n)=0 (Si n<0) Propiedades: 1)δ(n)=x(0) δ(n) 3) 2)δ(n)=u(n)-u(n-1) 4)

  7. SEÑALES DISCRETAS ELEMENTALES • x(n) = ejwn = cos(wn) + jsen(wn) • El conjunto de todos los valores distintos que esta secuencia discreta puede adoptar se encuentran en el intervalo [-π ,π]. SECUENCIA COMPLEJA EXPONENCIAL

  8. SEÑALES DISCRETAS ELEMENTALES • Las secuencias exponenciales complejas (y sinusoidales) no son necesariamente periódicas (con periodo T=2π /w), sino que la condición de periodicidad es: wN=2π k, siendo k un entero • Hay N frecuencias distinguibles para las cuales las secuencias correspondientes son periódicas con periodo N. Este conjunto de frecuencias es: wk=2π k/N siendo k=0,1,2...N-1 SECUENCIA COMPLEJA EXPONENCIAL

  9. SEÑALES DISCRETAS ELEMENTALES • Señalesde Energia: Son señales que tienen energia finita, por lo que son limitadas en tiempo. Se define la energía como :  E = ∑ |x(n)| • Señales de Potencia: Se describen en términos de potencia las señales Periódicas, o Aleatorias estacionarias o no limitadas en t. Se define la potencia como  CLASIFICACIÓN DE SEÑALES DISCRETAS

  10. SEÑALES DISCRETAS ELEMENTALES • Las señales discretas pueden clasificarse del siguiente modo: CLASIFICACIÓN DE SEÑALES DISCRETAS

  11. OPERACIONES ELEMENTALES • Suma de secuencias: y(n)=x1(n)+x2(n) • Multiplicación de secuencias: y(n)=x1(n)x2(n) • Adición escalar: y(n)=x(n)+α • Multiplicación por una constante: y(n)= α x(n) • Desplazamiento temporal: n-k -------> y(n-k) • Inversión: -n -------> y(-n)

  12. OPERACIONES ELEMENTALES • Secuencia par: x(-n)=x(n) • Secuencia impar: x(-n)=-x(n) • Toda secuencia arbitraria puede expresarse como la suma de dos componentes, una de las cuales es par y la otra impar:                  x(n)=xe(n)+xo(n) PROPIEDADES DE SIMETRÍA

  13. SISTEMAS LINEALES INVARIANTES EN EL TIEMPO • Un Sistemaes un modelo matemático ó abstracción de un proceso físico que relaciona entradas y salidas según alguna regla preestablecida. • En general: y(n) = T [x(-∞), x(n-1), x(n), x(n+1),..., x(∞)] • Sistema Causal: y(n) = T [x(-∞), x(n-1), x(n)] • Sistema causal de memoria finita: y(n)=T [x(n-N),..., x(n-1), x(n)] • Sistema invariante en el tiempo: y(n-m)=T[x(n-m)] y(n)=T[x(n)]

  14. SISTEMAS LINEALES INVARIANTES EN EL TIEMPO • Sistemas Lineales: Son aquellos que verifican el principio de superposición: • Homogeneidad: Un cambio en la amplitud de la señal de entrada, provoca el mismo cambio de amplitud en la señal de salida. • Aditividad : La respuesta a la suma de dos señales es la suma de las respuestas a cda una de las señales. • Si:   y1(n)=T [x1(n)] ,  y2(n)=T [x2(n)] y se verifica: T[ax1(n) + bx2(n)] = aT[x1(n)] +bT[x2(n)] = ay1(n)+ by2(n)

  15. SISTEMAS LINEALES INVARIANTES EN EL TIEMPO • Sistemas Invertibles: Si distintas entradas dan lugar a distintas salidas • En el caso de sistemas LIT: h(n) * h1(n)=d (n)

  16. SISTEMAS LINEALES INVARIANTES EN EL TIEMPO • En general: y[n] =T[x(n)] por otro lado: • Por linealidad:  • Si llamamos: h(n) = T[δ(n)]  Respuesta Impulsional del Sistema • Por Invarianza: h(n-k) = T[δ(n-k)] Luego:    -----> Suma de Convolución INTERACCION SEÑAL-SISTEMA

  17. SISTEMAS LINEALES INVARIANTES EN EL TIEMPO • Realizando el cambio: n-k=j  k=n-j INTERACCION SEÑAL-SISTEMA SISTEMAS DISCRETOS                     SISTEMAS CONTINUOS Suma de Convolución                       Integral de Convolución

  18. ESTABILIDAD • Un Sistema DLI es ESTABLE, si para una entrada acotada, la salida está acotada: |x(n)| < M => | y(n)| < N, para M,N finitos • Luego, el sistema es estable si está acotado: • Si un Sistema DLI, es Causal: y(n)=T[x(-∞),...,x(n)]

  19. ECUACIONES EN DIFERENCIAS • Los sistemas contínuos : Ecuaciones Diferenciales Lineales con coeficientes constantes . • Los sistemas discretos: Ecuaciones en diferencias lineales de coeficientes constantes. Expresión Recursiva

  20. ECUACIONES EN DIFERENCIAS • Caso Particular Describe un sistema LIT, en el que: h(n) = bn/a0 si 0£ n£ M                                                -------> FILTROS FIR h(n) = 0 en otro caso      • Las ecuaciones en diferencias pueden representarse graficamente definiendo los siguientes bloques: Expresión no Recursiva

  21. ECUACIONES EN DIFERENCIAS • SISTEMA CAUSAL  • FIR • IIR

More Related