240 likes | 642 Views
Dada una red. Slack. Gen_1. Carga_2. Carga_1. P. P. G. Q. Q. G. V 0°. |V|. |V|. P. G. P. Q. Carga_4. Gen_2. Q. Carga_3. Análisis de Flujo de Carga. Presentación del problema. Mediante resolución de las ecuaciones de flujo de carga determino las siguientes incógnitas:.
E N D
Dada una red Slack Gen_1 Carga_2 Carga_1 P P G Q Q G V0° |V| |V| P G P Q Carga_4 Gen_2 Q Carga_3 Análisis de Flujo de Carga Presentación del problema Mediante resolución de las ecuaciones de flujo de carga determino las siguientes incógnitas: Barra Tensión Angulo ------Carga------ ---Generación--- Shunt Mag. grados MW MVAr MW MVAr MVAr Carga_1 1.001 -2.938 200.0 30.0 0.0 0.0 0.0 Carga_2 1.029 -3.427 200.0 20.0 0.0 0.0 0.0 Carga_3 1.009 -13.732 100.0 30.0 0.0 0.0 0.0 Carga_4 0.893 -23.205 400.0 100.0 0.0 0.0 0.0 Gen_1 1.050 -0.709 0 0 500.0 161.3 0.0 Gen_2 1.050 -11.968 0 0 200.0 174.8 0.0 Slack 1.000 0.000 0.0 0.0 340.1 -22.6 0.0 Luego aplicando en forma directa las ecuaciones de la red determino: Una vez resueltas las barras, mediante las ecuaciones fundamentales de circuitos, determino: Flujo en las líneas y pérdidas --Línea-- -Flujo en la línea- --Pérdidas-- desde hasta MW Mvar MVA MW Mvar Carga_1 Carga_3 134.416 -28.964 137.501 4.205 -2.128 Carga_2 4.336 -41.077 41.305 0.156 -17.693 Carga_2 Carga_4 242.202 86.285 257.113 14.930 64.411 Carga_1 -4.180 23.384 23.754 0.156 -17.693 . . . . . . . . . . . . . .
Expresiones fundamentales de la red Vi yi1 V1 yi2 V2 . . . Ii yin Vn yi0
Clasificación de las barras de la red • Las barras son clasificadas generalmente en tres tipos: • Barra Slack - Es tomada como referencia donde |V| y son especificados, no aporta ecuaciones al algoritmo, si no que una vez calculados los |V| y en el resto de las barras, se calcula Pslack y Qslack : • Barra de carga - o barra PQ, se especifica la potencia activa y reactiva, el módulo y la fase de las • tensiones son desconocidas, y se calculan resolviendo el siguiente set de ecuaciones • no lineares: • Barra de generación- o barra PV o barras de tensión controlada, se especifican el módulo de la • tensión y la potencia activa, debiendose determinar la fase de la tensión y • la potencia reactiva.Los límites de la potencia reactiva son también • especificados. Se aplica entonces una única ecuación por barra para el • cálculo de la fase de la tensión: una vez calculadas todas los módulos y fases de las tensiones de todas las barras (o sea convergió algoritmo Newton-Raphson), se calcula Q en todas las barras PV: si se viola el límite inferior o superior en alguna/s barras se puede tomar alguna de las siguientes acciones correctivas: 1 - fijar Q=Qlim y liberar la tensión (transformar en una barra PQ) y vuelvo a entrar en el algoritmo N-R. 2 - Aumentar (o disminuir) un escalón porcentual el módulo de la tensión y vuelvo a entrar en el algoritmo N-R).
Datos de entrada para resolver el flujo de carga Dada una red Slack Gen_1 Carga_2 Carga_1 P P G |V| Q Q G V0° P Q P |V| P Q G P Q Carga_4 Gen_2 Q Carga_3 % Datos de archivo de entrada tomados del Gross, pag. 244 % % DATOS DE BARRA % CARGA GENERACION min max Shunt Shunt % BARRA TENSION MW MVAR MW MVAR MVAR MVAR MVAr SUCEPTANCIA SL Slack 1 0 0 0 0 0 0 0 0 PQ Carga_1 1 200 30 0 0 0 0 0 0 PV Gen_1 1.05 60 8 500 0 0 0 0 0 PQ Carga_2 1 200 20 0 0 0 0 0 0 PV Gen_2 1.05 50 5 200 0 0 0 0 0 PQ Carga_3 1 100 30 0 0 0 0 0 0 PQ Carga_4 1 400 100 0 0 0 0 0 0 % % % DATOS DE LINEAS % BARRA_1 BARRA_2 RESISTENCIA REACTANCIA SUCEPTANCIA Linea Carga_1 Carga_3 0.023 0.138 0.271 Linea Carga_2 Carga_4 0.023 0.138 0.271 Linea Carga_1 Carga_2 0.015 0.092 0.181 Linea Carga_3 Carga_4 0.015 0.092 0.181 % % % DATOS DE TRANSFORMADORES % BARRA_1 BARRA_2 RESISTENCIA REACTANCIA TAP Trafo Slack Carga_1 0.0012 0.015 1 Trafo Gen_1 Carga_2 0.001 0.012 1 Trafo Gen_2 Carga_3 0.002 0.024 1
Solución de Ecuaciones Algebraicas No-Lineares - Método de Newton-Raphson Interpretación gráfica: c(0) J(0) c(1) J(1) x(1) x(0) C=0
Ejemplo 6.1: a) Búsqueda de la raíz de f(x)=x3-6 x2+9x-4. clear dx=1; % Se inicializa el error con un valor elevado fun=input('Nombre de la función: '); % Nombre de la función.m donde están las expr. % de f y J. vx=input('Entre la estimación inicial y rango de ploteo [xe xi xf] -> '); x=vx(1); iter = 0; k=1; disp('iter Dc J dx x')% Encabezamiento de resultados while abs(dx) >= 0.001 & iter < 100 % Test de convergencia iter = iter + 1; % No. de iteraciones [f,J]=feval(fun,x); % feval ejecuta la función especificada % en el string fun con el argumento x. yp(k)=f; % Puntos para graficar las xp(k)=x; % pendientes. Dc=0 - f; % Residuo dx= Dc/J; % Se actualiza el error x=x+dx; % Soluciones sucesivas yp(k+1)=0; % Puntos para graficar las xp(k+1)=x; % pendientes. k=k+2; fprintf('%g', iter) % Se muestra iter sin ceros % no significativos disp([Dc, J, dx, x]) % Se completa con el resto de las % variables. end x=(vx(2):.1:vx(3)); % Rango de x para ploteo. f=feval(fun,x); % Se evalúa f en ese rango plot(x,f,x,0*x,xp,yp) axis([vx(2) vx(3) min(f) max(f)]) % Se fijan los ejes para x y f. function[f,J]=pol3(x) f=x.^3-6*x.^2+9*x-4; J=3*x.^2-12*x+9;
Búsqueda de la raíz de f(x)=x3-6 x2+9x-4. » te6ej1 Nombre de la función: 'pol3' Entre la estimación inicial y rango de ploteo [xe xi xf] -> [6 0 6] iter Dc J dx x 1 -50.0000 45.0000 -1.1111 4.8889 2 -13.4431 22.0370 -0.6100 4.2789 3 -2.9981 12.5797 -0.2383 4.0405 4 -0.3748 9.4914 -0.0395 4.0011 5 -0.0095 9.0126 -0.0011 4.0000 6 -0.0000 9.0000 -0.0000 4.0000
Ejemplo 6.1: b) Estudio de convergencia de f(x)=atg(x). function[f,J]=atx(x) f=atan(x); J=1./(1+x.*x); » te6ej1 Nombre de la función: 'atx' Entre la estimación inicial y rango de ploteo [xe xi xf] -> [1.4 -20 20]
Quedando entonces el algoritmo de Newton-Raphson: * El problema se reduce entonces a resolver sucesivos sistemas de ecuaciones lineares. En Matlab, la solución del sistema de ecuaciones es obtenida usando el operador de división de matrices \, o sea \ el cual es basado en factorización triangular y eliminación Gaussiana, mucho más eficiente que invertir * .
Ejemplo 6.2: Se usa el método de Newton-Raphson para encontrar la intersección de las curvas La siguiente rutina (te6ej2a) genera las gráficas tita=0:.02:2*pi; % Rango del ángulo de la cfa. r = 2*ones(1, length(tita)); % Vector radio de la cfa. x=-3:.02:1.5; % Rango de x para la segunda ec. y=1- exp(x); % Segunda ec. plot(x,y),grid axis([-3 3 -3 3]); axis('square'); % Relación de ejes tal que no deformen la cfa. xlabel('x') text(1.1,1.8,' x^2+y^2=4') text(1.2,-2.3,' e^x+y=1') hold on; % Se "fija" la gráfica tal que las sucesivas % se hagan en la misma figura con los mismos ejes. polar(tita, r) % Ploteo polar en un sistema cartesiano. hold off; % Se "libera" la figura
Tomando las derivadas parciales, la matriz Jacobiana resulta: La siguiente rutina (te6ej2b) aplica Newton-Raphson para el sistema arriba iter = 0; x=input('Entre el vector estimación inicial [x1; x2] -> '); Dx=[1; 1]; C=[4; 1]; disp('Iter DC Matriz Jacobiana Dx x'); while max(abs(Dx)) >= .0001 & iter < 100 iter=iter+1; f = [x(1)^2+x(2)^2; exp(x(1))+x(2)]; DC = C - f; J = [2*x(1) 2*x(2) exp(x(1)) 1]; Dx=J\DC; % Resolución del sistema de ecuaciones x=x+Dx; fprintf('%g', iter) disp([DC, J, Dx, x]) end » te6ej2b Entre el vector estimación inicial [x1; x2] -> [0.5 -1]' Iter DC Matriz Jacobiana Dx x 1 2.7500 1.0000 -2.0000 0.8034 1.3034 0.3513 1.6487 1.0000 -0.9733 -1.9733 2 -1.5928 2.6068 -3.9466 -0.2561 1.0473 -0.7085 3.6818 1.0000 0.2344 -1.7389 3 -0.1205 2.0946 -3.4778 -0.0422 1.0051 -0.1111 2.8499 1.0000 0.0092 -1.7296 4 -0.0019 2.0102 -3.4593 -0.0009 1.0042 -0.0025 2.7321 1.0000 0.0000 -1.7296 5 -0.0000 2.0083 -3.4593 -0.0000 1.0042 -0.0000 2.7296 1.0000 -0.0000 -1.7296
Tenemos entonces dos ecuaciones por cada barra PQ y una por cada barra PV, suponiendo que: Barra 1 - barra Slack Barra 2 a m - barras PQ Barras m+1 a n - barras PV Expandiendo en series de Taylor haciendo estimaciones iniciales para |V| y y despreciando los términos de orden elevado, se llega al siguiente sistema de ecuaciones lineares: En forma abreviada: El procedimiento para solucionar un flujo de carga con el método de Newton-Raphson es el que sigue: Especifica Pi y Qi Para las barras PQ Para la barra Slack Estima |Vi(0)| y (0) (igual a la slack) Se especifica V y Especifica Pi , |Vi| y los limites max y min de Qi Para las barras PV Estima (0) (igual a la slack) Usando los valores especificados y estimados Calculo el vector:
Se calculan los elementos de la matriz jacobiana J1, J2, J3 y J4. Se resuelve: Se actualizan los |Vi| y i : Mientras halla algún: |Pi(k)|> o algún |Qi(k)|> convergió Calculo la potencia reactiva en todas las barras PV: Si se violó al menos un límite tomo acción correctiva y vuelvo al algoritmo
Solución Flujo de Carga Desacoplado Rápido P está fuertemente acoplado a y debilmente acoplado a |V| Para relación X/R alta Q está fuertemente acoplado a |V| y debilmente acoplado a Además considerables simplificaciones a J1 y J4 pueden ser hechas: Bii -Qi Siendo Bii la parte imaginaria de los elementos de la diagonal de Y, o sea, la suma de todas las suceptancias incidentes a la barra i.
Bii Llegamos entonces a que los sistemas de ecuaciones Se pueden plantear como: Siendo B’ y B’’ constantes, estas pueden ser invertidas una única vez antes de iniciar las iteraciones y luego durante el proceso de cálculo los cambios de |V| y son dados en forma directa por:
El procedimiento para solucionar un flujo de carga con el método de Newton-Raphson desacoplado rápido es el que sigue: Especifica Pi y Qi Para la barra Slack Para las barras PQ Estima |Vi(0)| y (0) (1.00) Se especifica V y Especifica Pi , |Vi| y los limites max y min de Qi Para las barras PV Estima (0) (1.00) Determinar B’ y B’’ y en consecuencia [B’]-1 y [B’’]-1 Usando los valores especificados y estimados Calculo los vectores:
Se actualizan los |Vi| y i : Mientras halla algún: |Pi(k)|> o algún |Qi(k)|> convergió Calculo la potencia reactiva en todas las barras PV: Si se violó al menos un límite tomo acción correctiva y vuelvo al algoritmo
Aplicación de flujo de carga usando PSAT Dada la siguiente red Barra 1 Barra 2 Barra 3 Barra 4 P P G Q Q G V0° |V| |V| P P Q P Q G Q Barra 5 Barra 7 Barra 6 Con los siguientes datos (Sbase 100 MVA)
Suponiendo que las cargas representan los valores máximos esperados, y la generación está con • su capacidad a pleno. Definimos como operación satisfactoria de la red que las líneas no estén • sobrecargadas (el rating de las líneas es de 200MVA) y las tensiones en todas las barras estén en • un entorno de ±5% de la nominal, esto es, entre 0.95 y 1.05 pu. • Verificar si la red está operando en forma satisfactoria, y en caso de no ser así identificar los • puntos a corregir. • Chequear nuevamente la condición de operación de la red pero esta vez agregando la si- • guiente línea: