1 / 35

Geometrical study of the optimum PET detector for monitoring

Geometrical study of the optimum PET detector for monitoring. I. Torres- Espallardo , P. Solevi , J. E. Gillam , J. F. Oliver, G. Llosá , M. Trovato , C. Solaz , C. Lacasta and M. Rafecas IFIC (Univ. Valencia/CSIC), Spain. Index.

moanna
Download Presentation

Geometrical study of the optimum PET detector for monitoring

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Geometrical study of the optimum PET detector for monitoring I. Torres-Espallardo, P. Solevi, J. E. Gillam, J. F. Oliver, G. Llosá, M. Trovato, C. Solaz, C. Lacasta and M. Rafecas IFIC (Univ. Valencia/CSIC), Spain

  2. Index • „Evaluation of RPC-based PET appliedto in-beam HT monitoring“ – Review status (IT). • Geometricaloptimizationforcrystal-based PET dedicatedto HT monitoring (IT). • Novel PET design: AXPET fortreatmentverification (PS).

  3. „Evaluation of RPC-based PET appliedto in-beam HT monitoring“ – Review status. • Geometricaloptimizationforcrystal-based PET dedicatedto HT monitoring. • Novel PET design: AXPET fortreatmentverification

  4. PET for HT monitoring Nowadays, PET istheonlyfeasibleandclinicallyusedmethod. Challenges: • Crystal-based vs. Resistive-Plate-Chamber In-beam, in-room • Wash-out processes • Low positron yield • Partial ring geometry (*) • (*)only for in-beam Time Of Flight (TOF ) • Gas detector • Advantages: • Scintillating crystals and photon sensor. • Standard technology for clinical PET. • Excellent timing resolution • Inexpensive construction in large areas. • Depth of interacion information (layered structure) γ γ Scintillatingcrystal HV Position readout e- E Photodetectors

  5. RPC-based vs. Crystal-based PET for HT monitoring January 2012 April 2012 November 2012 November 2013 Deliverable 2.7: Comparisonofbothtechnologiesfortreatmentverification: performanceestimation (UGENT), individual hadron beam forrangeanalysis (IFIC) andtreatmentpatientdata (Dresden) After mid-termmeeting in Ciudad Real: UGENT proposedtopresentthisworkatthe IEEE-MIC conference in 2012  Oral Presentation. After November-2012 WP2 meeting: include in theworktheoptimizedgeometryofthe RPC-based PET Finalizingthepaper: twotechnologies, different geometries (full-ring and partial-ring; standardandextended), for a widerangeofsources

  6. Source Simulations -Performace evaluation sources (NEMA protocol) - Include a linear sourcesmallerthantheproposed in NEMA (70 cm to 15 cm) toadapttothetreatmentsizes presentedby S. Vanderberghe (UGENT) -Patient Treatment data from GSI - Presentedby H. Rohling (Oncoray, Un. Dresden) -Positron distribution hadron beam with Geant4 • Output: • Positron distributionproducedwithinthe PMMA phantom. Ideal hadron beam (noenergy, nopositionuncertainty) (L= 20 cm, D = 15 cm) Physicspackages: QGSP_BIC_HP forhadronic model andstandardforelectromagetic model

  7. Simulations of the detectors using GATE (Standard) RPC PET CRYSTAL-BASED PET (Gemini) Complete and 14-Heads RPC system Geometrycourtesyof F. Diblen, UGhent 28 Heads 80 cm 20 Heads • TOF FWHM: 50, 100, 200 ps 20/60 modules in a radial sector • Axial FOV: 30 cm • Diameter: 80 cm • Noenergyavailable • Crystal: 4x4x22 mm3,LYSO • TOF resolution: 200, 400, 600ps FWHM • Axial FOV: 18 cm • Diameter: 90 cm • Energywindow: 440-665 keV Stack composition 5 glass plates with 120x300x3.2 mm3 8 mm pitch 4 gas volumes filled with Freon • Spatial Resolution: σx = 3.9 mm (module); σy = 2 mm; σz = 4 mm • (Data providedbyD.Watts & F.Sauli)

  8. Simulations of the detectors using GATE (Extended & Optimized) OPTIMIZED RPC PET EXTENDED CRYSTAL-BASED PET (Gemini) 14-Heads RPC system GeometrycourtesyofD.Watts, Tera Geometrycourtesyof F. Diblen, UGhent • TOF FWHM: 50, 100, 200 ps 20 Heads • Axial FOV: 60 cm • Diameter: 80 cm • Noenergyavailable 80 cm • Crystal: 4x4x22 mm3,LYSO • TOF resolution: 200, 400,600 ps FWHM • Axial FOV: 40 cm • Diameter: 90 cm • Energywindow: 440-665 keV Stack composition 5 glass plates with 120x300x1.95 mm3 (glass thickness 150 μm) 4 mm pitch 4 gas volumes filled with Freon 60 modules in a radial sector Std Opt 8 mm 4 mm

  9. Image Reconstruction TOF-MLEM: Maximum-LikelihoodExpectation-Maximizationmodifiedtoinclude TOF information • Ray tracingbased on Siddonalgorithm • TOF: Gaussiandistributionwhose FWHM equaltothe time resolutionandmeanequaltotheexpectedpositionoftheemissionusingδT. Image Quality Evaluation R50: z coordinate where the distal part of the activity profile drops at 50% of the maximum. E98: z coordinate where the integral of the activity curve reaches 98% of the total area ROI: 20x20x200 mm centered on the beam 50% ofImax E98 R50

  10. Resultsforprotonbeams(I) Crystal-based (completeand partial ring system)

  11. Resultsforprotonbeams(II) Extended Crystal-based (completeand partial ring system)

  12. Resultsforprotonbeams(III) RPC-based, completesystem

  13. Resultsforprotonbeams(IV) RPC-based, partial ring

  14. Resultsforprotonbeams(V) Optimized RPC-based, partial ring Forcomparison: PR standardcrystal-based PR: 14; NMod: 60

  15. Resultsforprotonbeams (VI) R50 Crystal-based ΔRref(mm) E (MeV) Full Ring Partial Ring E (MeV) E (MeV) ΔRref(mm) RPC-based RPC-based

  16. Resultsforprotonbeams(VII) R50 Crystal-based, Std Crystal-based, Ext. ΔRref(mm) E (MeV) E (MeV) RPC-based, Std. ΔRref(mm) E (MeV) E (MeV) RPC-based, Opt.

  17. Conclusions • Limitingfactorfor RPC-based PET dedicatedto HT monitoringisthesensitivity (supportedbytheresultswithpatientdata). • Investigatingother geometries, such a trapezoidalmoduleswouldincreasethesensitivity(underinvestigation). • Althoughithasbeenshownthatthistechnologyhaslimitationsfor on-line monitoring, thisdoes not implythat RPC-baseddevicescould not beusefulforotherapplications (wholebodyimaging).

  18. „Evaluation of RPC-based PET appliedto in-beam HT monitoring“ – Review status. • Geometricaloptimizationforcrystal-based PET dedicatedto HT monitoring. • Novel PET design: AXPET fortreatmentverification

  19. Simulations of the hadron beam with Geant4.9.3 • Output: • Positron distributionproducedwithinthe PMMA phantom. (L= 20 cm, D = 15 cm) • G4 Physicspackages: • QGSP_BIC_HP forhadronicmodel • Standard forelectromagetic model Ideal hadron beam (noenergy, andpositionaluncertainty)

  20. Simulationsoftreatmentdatawith GATE andPosGen(*) Proton treatment (from WP6, courtesyofCh. Robert, IMNC - UMR 8165): Simulatedannihilationmapsbased on a treatmet plan using GATE-TPS sourceandthepatientreceived ~2 Gy per fractionwithtwobeams. Numberofsimulatedannihilationsis 3.5∙108 produced after 10 minutes. Carboniontreatment (from GSI, courtesyof H. Rohling, Oncoray): Simulatedannihilationmapsbased on a real treatmet plan of a clivalchondrosarcomaandthepatientreceived 0.662 Gy per fractionwithoneoftwofields. Numberofsimulatedannihilationsis 2.7∙106. (*) Poenisch, K. Parodi, B. G. Hasch, W. Enghardt: The modelling of positron emitter production and PET imaging during carbon ion therapy. Phys. Med. Biol. 49 5217-5232, 2004

  21. Simulations of the detectors using GATE 6.1 Dedicated PET: reduceddiameterandincreased axial extension improvedsensitivity Commercial PET: based on thegeometryofthe Philips Gemini (courtesyof F. Diblen, Un. Ghent) SPR-PET SC-PET PR-PET C-PET 30 cm 30 cm 40 cm 40 cm 60 cm 30 cm 60 cm 20 Heads 30 cm Sensitivityincrease

  22. Image Reconstruction TOF-MLEM: Maximum-LikelihoodExpectation-Maximizationmodifiedtoinclude TOF information • Ray tracingbased on Siddonalgorithm • TOF: Gaussiandistributionwhose FWHM equaltothe time resolutionandmeanequaltotheexpectedpositionoftheemissionusingδT. Image Quality Evaluation R50: z coordinate where the distal part of the activity profile drops at 50% of the maximum. ROI: 20x20x200 mm centered on the beam 50% ofImax R50

  23. Resultsforprotonbeams Comparisonstandard PET todedicated PET 160 MeVprotons, 40th iteration Full ring standard Partial ring standard PR-PET C-PET SPR-PET SC-PET Better TOF 200 400 600 Sentivityincrease Improvements in TOF removepartiallythewideningartifact due tothe partial ring, but theincrease in axial directionandthereductionofthedetectordiameterhave a higherimpact in reducingtheartifact.

  24. Range Verification Range calculationsfromthereconstructedpositrondistributionofprotonandcarbonionbeams Protons Carbon Ions

  25. Treatment datareconstruction Proton treatment: Annihilation Points Axial Coronal Sagittal SC-PET Profilesofthereconstructedimagesof SC-PET at different TOFs (15th iteration) TOF= 200 ps; 15th iteration Carboniontreatment: Annihilation Points C-PET SC-PET Nasal area: hotspotsfor C-PET andalmostnoactivityfor SC-PET, like in thereference

  26. Conclusions • Positron distributioncomingfromionbeams (protonsandcarbonions), itisobservedthatTOF haslittleeffect on therangecalculations. The sensitivityofthescanneriscrucialtoachieve 3-mm rangedifference. Betterimagesofthepositrondistributionof a real treatment plan are also observedforthehighest sensitive PET configuration. In theshortterm, quantitative analysisofpatientdatawithprotonsandcarbonions will beincluded in ourstudytocharacterizetheminimumrequirements in termsofsensitivityof a PET systemfor on-line dose monitoring.

  27. „Evaluation of RPC-based PET appliedto in-beam HT monitoring“ – Review status. • Geometricaloptimizationforcrystal-based PET dedicatedto HT monitoring. • Novel PET design: AXPET fortreatmentverification (P. Solevi)

  28. AX-PET: 100 mm long LYSO crystals, axially oriented with 3x3 mm2 section, combined with an array of WLS strips. Both LYSO and WLS are individually read-out by SiPMs. AX-PET concept & features • Sensitivity and resolution decoupled • Reduced parallax error WLS • Full ring based on AX-PET is tested for in-room PET. Why? LYSO Large fraction of triple events yielded can increase sensitivity, crucial for HT monitoring. A modified AX-PET module was tested with dSiPM and provides 269 ps CRT (FWHM). ”A Monte-Carlo based model of the AX-PET demonstrator and its experimental validation” P. Solevi et al, PMB 58 (2013)

  29. First results in HT monitoring Pencil p and C ions monoenergetic beams: triple inclusion study. C ion treatment in PMMA, 5 minutes long acquisition, 2 Gy delivered, TOF study. Double+triples, 5' long acq. Double, 5' long acq.

  30. Thanksforyourattention!!! • Acknowlegments: • ENVISION projectco-fundedbythe European Commissionunderthe FP7 grantagreementno. 241851. • ITN ENTERVISION (FP7, G.A. No. 264552). • Spanish Ministerio de Economía y Hacienda, through “Juan de la Ciervaprogram“, FPA2010-14891 grant, FIS2011-14585, and PTA2011-6139-I. • GeneralitatValencianathrough GV/2013/133. • University of Valencia trough UV-INV-PRECOMP12-80755.

  31. ENVISION Project • European NoVelImaging Systems forIONtherapy • on-line dose monitoringbydevelopingnovelimagingmodalitiesrelatedto dose depositionthatallowtoassessthetreatedvolumeduringhadrontherapy Hadron beam TOF γ Patient γ Tumor TOF in-beam PET (crystal- and RPC-based) to reconstruct the positron distribution generated by the hadron beam γ Scintillators crystals (LaBr3) to build a Compton Camera to image the „prompt gamma“ generated in the first nanoseconds.

  32. WPs in ENVISION • IRIS groupisinvolved in: • WP2: TOF in-beam PET (crystal- and RPC-based). • WP3: detectionof prompt radiation (in-beam SPAT: gamma, lightchargedparticlesandneutrons), overcomingtheinherentsensitivityofib-PET tometabolism.

  33. PET and Compton Camerafor HT monitoring Novelmethodof in-vivo dosimetrybased on thedetectionoftheprompt-gammaproduced after thetherapeutic beam  not affectedbythewash-out processes Nowadays, PETistheonlyfeasibleandclinicallyusedmethod. Challenges: • Wash-out processes • Low positronyield, short half-lifepositronemitters • Partial ring geometry(*) • (*)onlyfor in-beam In-beam, in-room Time Of Flight (TOF ) Detectiontechnique: Compton Camera

  34. TOF RPC-based PET • RPC stands for Resistive Plate Chamber • Gas detector • Advantages: • Excellent timing resolution • Inexpensive construction in large areas. • Depth of interacion information (layered structure) • Basics: • Incoming photon ionizes the gas • High voltage creates an avalanche of electrons • Several layers gives good detection efficiency • Thin layers gives better timing properties Sensitive Area (precisesmallgap 300 μm) (M. Couceiro, Jornadas DFM, 2010)

  35. Results for carbon beams (I) CRYSTAL-PET RPC-PET

More Related