1 / 9

Unit 4 Day 4 – Electron Properties & Hall Effect

Unit 4 Day 4 – Electron Properties & Hall Effect. Cathode Rays and Cathode Ray Tubes Electron Beam in the Presence on an Electric & magnetic Field The Velocity Selector The Hall Effect & Hall EMF. Cathode Rays. In the 1890’s, devices were built called discharge tubes

Download Presentation

Unit 4 Day 4 – Electron Properties & Hall Effect

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Unit 4 Day 4 – Electron Properties & Hall Effect • Cathode Rays and Cathode Ray Tubes • Electron Beam in the Presence on an Electric & magnetic Field • The Velocity Selector • The Hall Effect & Hall EMF

  2. Cathode Rays • In the 1890’s, devices were built called discharge tubes • What was emitted & observed as a “glow” was called cathode rays. It was later determined that these were ionized electrons. Evacuated but back filled with rarified gas

  3. Cathode Ray Tube • Cathode Ray Tube (CRT) starts with a beam of electrons which are passed through a set of parallel plates, and a set of coils, 90° to the plates. • When the E-Field is applied, the electrons curve up. When the B-Field is applied, the electrons curve down.

  4. Electron Properties • Remember, in previous experiments performed by J. J. Thompson, if the Electric and Magnetic forces are balanced: • The electron velocity becomes: • E, B, & r, were all measurable quantities

  5. Electron Properties • Note: In later experiments by Millikan (Oil-drop Experiment), the charge of the electron was established. • Knowing e and e/me, then me was calculated to be:

  6. The Hall Effect • If a current carrying conductor is held fixed in a magnetic field, the magnetic force on the electrons in the conductor is: where vd = drift velocity • The electron will tend to move to the bottom of the conductor (D)

  7. The Hall Effect • The movement of the electron will develop a ΔV between the top (C) and the bottom (D) which will set-up an electric field EH. • This produces an electric force –eEH on the moving electrons (which is upward, equal and opposite to the magnetic force)

  8. The Hall Electric Field & EMF • The EH is called the Hall Field, after E. H. Hall, who discovered this effect in 1879 • The EMF produced by the Hall Field is then: where d is the width of the conductor • The magnitude of the Hall EMF is proportional to the strength of the magnetic field

  9. Hall Effect Applications • A Hall Effect Probe can be constructed to measure the strength of a magnetic field • A Hall Effect device can also be used to measure the drift velocity, given a known magnetic field

More Related