1 / 28

FPGA Configuration

FPGA Configuration. Introduction. Configuration Data Source. FPGA. Control Logic (optional). What is configuration? Process for loading data into the FPGA. Introduction. When does configuration happen? On power-up On demand Why do FPGAs need to be configured?

molimo
Download Presentation

FPGA Configuration

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. FPGA Configuration

  2. Introduction Configuration Data Source FPGA Control Logic (optional) • What is configuration? • Process for loading data into the FPGA

  3. Introduction • When does configuration happen? • On power-up • On demand • Why do FPGAs need to be configured? • FPGA configuration memory is volatile • What do I need to know about FPGA configuration? • What happens during configuration • How to set up various configuration modes and daisy-chains • How to troubleshoot problems

  4. FPGA Configuration Process • In order to understand the configuration process, you need to know a little about: • Configuration modes • Configuration pins

  5. Configuration Modes • Configuration modes define the specifics of how the FPGA will interact with: • The data source • External control logic (if any) • Many configuration modes to choose from • Serial modes (Master and Slave) • SelectMAP mode (Slave Parallel) • Boundary scan mode (Slave) - always available • Other Xilinx FPGA families have more configuration modes

  6. Configuration Modes Note: • Configuration pins (M0, M1, M2))

  7. Configuration Modes:Serial Modes • Data is loaded 1 bit per CCLK • Master serial • FPGA drives configuration clock (CCLK) • FPGA provides all control logic • Slave serial • External control logic required to generate CCLK • Microprocessor • Xilinx serial download cable • Another FPGA CCLK Serial Data FPGA Data Serial Data FPGA Data CCLK Control Logic

  8. Configuration Modes:SelectMAP Mode • CCLK is driven by external logic • Data is loaded 1 byte per CCLK Byte-Wide Data FPGA Data Control Signals CCLK Control Logic

  9. Configuration Modes:Boundary Scan Mode • External control logic required • Control signals and data are presented on the boundary scan pins (TDI, TMS, TCK) • Data is loaded 1 bit per TCK • Always available (independently on M0,M1,M2) Serial Data FPGA Data Control Signals Control Logic

  10. Configuration Pins • Specific pins on the FPGA are used during configuration • Some pins act differently depending on configuration mode • Example: CCLK is an output in some modes and an input in others • Some pins are only used in specific configuration modes • Example: CCLK is not used for Boundary Scan mode

  11. Configuration Pin Descriptions • Mode Pins (M0, M1, M2) • Input pins that select which configuration mode is being used • PROGRAM • Active low input that initiates configuration • CCLK (Configuration Clock) • Input or output, depending on configuration mode • Frequency up to 10MHz (see Data Book for your device family) • DIN • Serial input for configuration data

  12. Configuration Pin Descriptions • DOUT • Output to next device in a daisy-chain • Used in daisy-chains only • INIT • Open-drain bi-directional pin • Error and Power Stabilization Flag • DONE • Open-drain bi-directional pin • Indicates completion of configuration process • Other pins are used for specific configuration modes • (i.e. JTAG Pins)

  13. Configuration Process • Four major phases in the process: • Configuration memory clear • Initialization • Load configuration data • Start-up

  14. Configuration Process Configuration Memory Clear Phase • 2 Way to configure (power up - Program) • Non-configuration I/O pins are disabled with optional pull-up resistors • INIT and DONE pins are driven low • FPGA memory is cleared • PROGRAM is checked after each memory pass • Proceed to initialization Initialization

  15. Configuration Process:Initialization Phase INIT High? Sample Mode Pins Release INIT • INIT pin is released • INIT may be held low externally to delay configuration • Mode pins are sampled • Appropriate configuration pins become active • Proceed to load configuration data Configuration Memory Clear No Yes Load Configuration Data

  16. Configuration Process:Load Configuration Data Phase CRC Correct? Load Data Frames Pull INIT Low • FPGA starts receiving data • CRC is checked during the data frames transmission • If incorrect value received, INIT is driven low and rest of data is ignored • If the CRC checks pass, proceed to start-up Initialization No Yes Start-Up

  17. Configuration Process:Start-up Phase Activate I/O Pins Release DONE Release GWE Release GSR • Transition phase from configuration to normal operation • Order of events is user programmable • Accessed through software options • Default sequence is: • DONE pin is released • All I/O pins become active • Global write enable released • Global reset released • FPGA is operational Load Configuration Data FPGA is Operational

  18. Configuration Process:Start-up Phase • Default sequence is: • DONE pin is released • All I/O pins become active • Global write enable released • Global reset released • Another useful sequence is “Sync to DONE” • Useful for multiple FPGA configuration (Daisy chain) • Configuration option

  19. Master Serial Mode • All mode pins tied low • FPGA drives CCLK as an output • Data stream loaded 1 bit at a time • Use when data stream is stored in a serial PROM

  20. Slave Serial Mode • All mode pins tied high • FPGA receives CCLK as an input • Data stream loaded 1 bit at a time • Use with the xilinx serial download cable

  21. What Is a Daisy-Chain? • Multiple FPGAs connected in series for configuration • Allows configuration of many devices from a single data source • Minimal board traces • First device in the chain can be in master serial or slave serial mode • All other devices must be in slave serial mode

  22. Daisy-Chain Question • How do you think these FPGAs could be connected to form a Daisy-chain?

  23. Daisy-Chain Answer • Connect all PROGRAM, CCLK and DONE pins together • Connect each DOUT to the DIN of next device • Recommend connecting INIT pins, but not required

  24. Creating a Daisy-Chain • Connect PROGRAM pins • Required so that all FPGAs will reprogram together • Connect CCLK pins • Required so that all FPGAs are synchronized with each other and with the configuration data • Connect DONE pins • Required so that all FPGAs start-up together • Connect each DOUT to the DIN of next device • Required to allow each FPGA to receive configuration data • Connect INIT pins • Recommended to create a single error flag, but not required

  25. How a Daisy-Chain Works • First FPGA in the chain is configured first • Keeps DOUT high until its configuration memory is full • Then data is passed to the next device in the chain • Start-up sequence occurs after all devices are configured • FPGA devices pause after internally releasing DONE, and continue when DONE externally goes high

  26. Review Questions • Which phase of the configuration process takes the most time? • What is the main difference between the master serial and slave serial configuration modes?

  27. Answers • Which phase of the configuration process takes the most time? • The load configuration data phase takes the bulk of the configuration time • What is the main difference between the master serial and slave serial configuration modes? • CCLK is an output in master serial, input in slave serial

  28. Summary • Field programmable devices are configured on power-up from an external data source • The phases of the configuration process are: • Configuration memory clear • Initialization • Load configuration data • Start-up • Master serial and slave serial are the simplest configuration modes

More Related