320 likes | 413 Views
Transformations. Getting normal or using the linear model. Two Reasons to Transform. Variables do not fit a normal distribution and parametric tests are desired A relationship between two variables is non-linear but transformation would allow the use of linear regression. Non-Normal Data.
E N D
Transformations Getting normal or using the linear model
Two Reasons to Transform • Variables do not fit a normal distribution and parametric tests are desired • A relationship between two variables is non-linear but transformation would allow the use of linear regression
Non-Normal Data • Reasons real data can fail to follow a normal distribution: • Errors in measurement are multiplicative rather than additive, e.g. ± 2% rather than ± 2mm • Constraints on the dimensions of an artifact feature are not symmetrical, e.g. point length must exceed haft length but can be as long as the material allows
Non-Normal Data 2 • Measurements are products rather than sums of other measurements, e.g. area, volume • Counts follow binomial, poisson, or negative binomial distributions which are often asymmetrical unless sample sizes are large
Solutions • Use non-parametric methods that do not depend on the normality of the data (increasingly easy to do) • Use data transformations that shift the distribution to one that is normal
Transformation • The goal is to change the spacing of the data to compress a long tail and draw out a flat tail • The transformation must preserve the order of the original data – we only change the spacing between data points
Transformation • Right skewed data with many zeros cannot be transformed effectively since nothing can stretch out observations that have the same value – e.g. artifact counts by site, grid square are often poisson distributed with many zeros
An Example • Using the DartPoints data set, we saw that Length was asymmetrical • Plot the kernel density of Length with and without a log scale to see the difference • To transform Length we would use • logLength <- log(DartPoints$Length)
plot(density(DartPoints$Length), main="Dart Point Length", xlab="Normal scale") plot(density(DartPoints$Length), main="Dart Point Length", xlab="Log scale", log="x")
Common Transformations • Tail to the right • Natural or common (base 10) logarithm – no zero values • Square root, cube root, etc – zeros ok • Inverse, -1/x, -1/x2, etc – no zero values • Tail to the left • Exponential ex,10x (low values) • Square, cube, etc
Other Transformations • arctangent (inverse tangent) to handle values between 0 and 1 used for population studies of non-metric traits
Transforming to Linear • By transforming variables before using linear regression we can fit nonlinear equations • In some cases we can express the fitted equation in terms of the original untransformed variables
Polynomial • Y = a + b1x + b2x2 + b3x3 + b4x4 . . . • Create polynomial values or use the function poly() within lm() • Begin with linear and then work up to quadratic, cubic, and so on until the new terms are not significant • Eg. lm(y~x+I(x^2)+I(x^3))
Power Function • Log-log transformation • Use log() to transform dependent and independent variables • Compute linear regression • log(y) = a + b * log(x) • y = Axb (where A= exp(a)) • If b = 1, same as the linear model • x, y > 0
Exponential function • Semi-log transformation • Use log() to transform dependent variable, y > 0 • Compute linear regression • log(y) = a + b * x • y = Aebx (where A= exp(a)) • Fits data with asymptotes
Inverse Function • Reciprocal transformation – 1/x where x ≠ 0 • Used for distance models – marriage, trade, social interaction declines with distance • Fits data with asymptotes
Other Functions • Logarithmic – no zeros in x • y = a + b * log(x) • Square Root – no negative values in x • y = a + b * sqrt(x)
Examples • Human cranial capacity over the last 1.8 million years • Number of Identified Specimens (NISP) and Minimum Number of Individuals (MNI) at Chucalissa (Middle Misssissippian site)
# BrainsCC.RData # Explore logs with scatterplot RegModel.1 <- lm(BrainCC~AgeKa, data=BrainsCC) # Rcmdr summary(RegModel.1) # Rcmdr BrainsCC$logAge <- with(BrainsCC, log(AgeKa)) # Rcmdr BrainsCC$logBrain <- with(BrainsCC, log(BrainCC)) # Rcmdr RegModel.2 <- lm(logBrain~logAge, data=BrainsCC) # Rcmdr summary(RegModel.2) # Rcmdr RegModel.3 <- lm(BrainCC~logAge, data=BrainsCC) # Rcmdr summary(RegModel.3) # Rcmdr plot(BrainCC~AgeKa, data=BrainsCC, pch="+") abline(RegModel.1, lty=1, lwd=2, col="black") x <- seq(0, 1800, 10) logx <- log(x) lines(x, exp(predict(RegModel.2, data.frame(logAge=logx))), lty=1, lwd=2, col="red") lines(x, predict(RegModel.3, data.frame(logAge=logx)), lty=1, lwd=2, col="blue") legend("topright", c("Linear", "Power", "Logarithmic"), lty=1, lwd=2, col=c("black", "red", "blue"))
LinearModel.4 <- lm(BrainCC ~ AgeKa + I(AgeKa^2), data=BrainsCC) summary(LinearModel.4) LinearModel.5 <- lm(BrainCC ~ AgeKa + I(AgeKa^2) + I(AgeKa^3), data=BrainsCC) summary(LinearModel.5) LinearModel.6 <- lm(BrainCC ~ AgeKa + I(AgeKa^2) + I(AgeKa^3) + I(AgeKa^4), data=BrainsCC) summary(LinearModel.6) plot(BrainCC~AgeKa, data=BrainsCC, pch="+") abline(RegModel.1, lty=1, lwd=2, col="black") x <- seq(0, 1800, 10) lines(x, predict(LinearModel.4, data.frame(AgeKa=x)), lty=1, lwd=2, col="red") lines(x, predict(LinearModel.5, data.frame(AgeKa=x)), lty=1, lwd=2, col="blue") lines(x, predict(LinearModel.6, data.frame(AgeKa=x)), lty=1, lwd=2, col="green") legend("topright", c("Linear", "Quadratic", "Cubic", "Quartic"), lty=1, lwd=2, col=c("black", "red", "blue", "green"))
load("C:/Users/DCarlson/Documents/anth642/R/Data/Chucalissa.rda") #Rcmdr plot(mni~nisp, data=Chucalissa) RegModel.1 <- lm(mni~nisp, data=Chucalissa) #Rcmdr summary(RegModel.1) #Rcmdr abline(RegModel.1) plot(mni~nisp, data=Chucalissa, log="xy") # Plot log-log transform plot(mni~nisp, data=Chucalissa, log="y") # Plot semi-log transform Chucalissa$logMNI <- log(Chucalissa$mni) # Create logged variables Chucalissa$logNISP <- log(Chucalissa$nisp) plot(logMNI~logNISP, data=Chucalissa) RegModel.2 <- lm(logMNI~logNISP, data=Chucalissa) #Rcmdr summary(RegModel.2) #Rcmdr abline(RegModel.2) plot(mni~nisp, data=Chucalissa) # plot log-log equation on original data a2 <- exp(RegModel.2$coefficients[[1]]) # Convert a to exp(a) b2 <- RegModel.2$coefficients[[2]] a1 <- RegModel.1$coefficients[[1]] b1 <- RegModel.1$coefficients[[2]] curve(a2*x^b2, 0, 3250, add=TRUE) abline(RegModel.1, lty=3) text(locator(), as.expression(substitute(MNI == a*NISP^b, list(a=round(a2, 4), b=round(b2, 4)))), pos=2) text(locator(), as.expression(substitute(MNI == a+b*NISP, list(a=round(a1, 4), b=round(b1, 4)))), pos=4)