140 likes | 271 Views
Transformations. Fourier transformation. forward inverse. f(t) = cos(2* * 5 *t) + cos(2* * 10 *t) + cos(2* * 20 *t) + cos(2* * 50 *t) . Spectrum, phase. In general F(u) is a complex function:
E N D
Transformations Theo Schouten
Fourier transformation forward inverse f(t) = cos(2**5*t) + cos(2* *10*t) + cos(2* *20*t) + cos(2* *50*t) Theo Schouten
Spectrum, phase In general F(u) is a complex function: F(u) = R(u) + j I(u) = | F(u) | ej (u) | F(u) | = (R2(u) + I2(u) ) : the Fourier spectrum of f(x)(u) = tan-1 ( I(u) / R(u) ) : the phase angle of f(x) Theo Schouten
2 D Fourrier F(u,v) = f(x,y) e-j2(ux+vy) dx dyf(x,y) = F(u,v) e+j2(ux+vy)du dv Theo Schouten
Convolution • c(x) = f(x) g(x) = f()g(x-) d • C(u) = F(u)G(u) • Point spread function of a lens • Light on ideal point (,) spread over pixels (x,y) according h(x,,y, ) • p(x,y) = w (,) h(x,,y, ) d d • Linear: h(x,,y, ) = h(x-,y- ) • p(x,y) = w (,) h(x-,y- ) d d = w h • P(u,v) = W(u,v)H(u,v) Theo Schouten
Discrete Fourier Transformation In 2-D the DFT becomes: F[u,v] = 1/MN x=0M-1y=0 N-1 f[x,y]e -j2 (xu / M + yv / N)f[x,y] = u=0M-1v=0N-1 F[u,v] e+j2(xu / M + yv / N) Theo Schouten
Fast Fourier Transformation • To calculate F[u] for u=0,1...N-1 it takes N*N multiplications and N*(N-1) summations of complex numbers (e... in a table). • The complexity of a DFT is therefore proportional to N2. • Transform 1 DFT of N terms into 2 DFTs of N/2 terms. • We can apply this recursively and reach a complexity of N log2N. • special purpose hardware chips wirh parallel processing Theo Schouten
Use in CT g (x') = f(x',y') dy' x' = x cos + y sin y'= -x sin +y cos FT( g (x')) = F(u cos , u sin ). Theo Schouten
Other transformations • DFT example of whole class of transformations • T(u) = x=0 N-1 f(x) g(x,u) with g the forward transformation kernelf(x) = u=0 N-1 T(u) h(x,u) with h the inverse transformation kernel • Discrete Cosine: cos( (2x+1)u / 2N) , JPEG, MPEG • T(u,v) = x=0 N-1y=0 N-1 f(x,y) g(x,y,u,v)f(x,y) = u=0 N-1v=0 N-1 T(u,v) h(x,y,u,v) • g(x,y,u,v) = g1(x,u) g2(y,v) : separable: 2D = N 1D Theo Schouten
Continuous wavelets Mexican-hat (x)= c (1-x2) exp(-x2/2) the second derivative of a Gaussian Construction of the Morlet wavelet as a sinus modeled by a Gaussian function • set of wavelet basis functions s,t(x) : • s,t(x) = ( (x-t) / s) / s, s > 0 the scale and t the translation • The CWT of f(x) is then: • Wf(s,t) = <f, s,t> = f(x) s,t(x) dx • f(x) = (1 / C ) Wf(s,t) s,t(x) dt ds/s2 Theo Schouten
Continuous wavelet transform Theo Schouten
Time frequency tilings In the discrete wavelet transform one works with factors 2 Also here there is a Fast Wavelet Transformation Theo Schouten
Example 3 scale 2D FWT Theo Schouten
Example Theo Schouten