370 likes | 527 Views
X-Ray Binary Light-Curve Analysis in optical and x-ray or “the ‘crazy’ LMXB (low mass x-ray binary) EXO 0748-676“. Trainee: Alexander Kolodzig Origin: HU Berlin, UCM Madrid (Erasmus) Tutor: Maria Diaz Trigo ESA-Stay: 03/2008 - 06/2008.
E N D
X-Ray Binary Light-Curve Analysisin optical and x-rayor “the ‘crazy’ LMXB (low mass x-ray binary) EXO 0748-676“ Trainee: Alexander Kolodzig Origin: HU Berlin, UCM Madrid (Erasmus) Tutor: Maria Diaz Trigo ESA-Stay: 03/2008 - 06/2008 Background Picture Credits - Binary System: with ESA, NASA and Felix Mirabel - XMM-Newton: ESA (Image by C. Carreau)
Overview 1. The Observed Object 1.1. Name and Type 1.2. Position in the Milky Way 1.3. System Parameters 1.4. Members of the System 1.5. Components of a LMXB 1.6. Dynamics of a LMXB 1.7. Discovery 1.8. Main Features 2. Light-Curve – Analysis 2.1. My Main Project-Tasks 2.2. Light Curve Creation 2.3. Modeling & Analysis 2.4. Further Analysis X-Ray Binary Light-Curve Analysis - A.Kolodzig
1. The Observed Object1.1. Name and Type • Name: EXO 0748-676 (opitcal: UY Vol star) • Type: low mass x-ray binary (LMXB) Video Credits: D. Klochkov 2008 X-Ray Binary Light-Curve Analysis - A.Kolodzig
1.2. Position in the Milky Way • equatorial coordinates: Figure: Sky distribution of bursters showing those observed by RXTE (Rossi X-ray Timing Explorer) Credit: Galloway et al. 2006 X-Ray Binary Light-Curve Analysis - A.Kolodzig
1.3. System Parameters • Orbital Periode: 3.82 hours (Parmar et al. 1985) • Estimate Distance: 5.9 - 7.7 kpc (Wolff et al. 2005) • Inclination: 75° - 83° (Parmar et al. 1986) • optical Magnitude: 16.9 mag (Pedersen et al. 1985) X-Ray Binary Light-Curve Analysis - A.Kolodzig
1.4. Members of the System • Neutron-Star • estimated Mass: 1.4 solar masses (SM) • Companion Star • main sequence, sun like star • Mass: 0.45 SM (assuming Roche lobe overflow, the spectral class & the neutron-star-mass) (Masses: Parmar et al. 1986) X-Ray Binary Light-Curve Analysis - A.Kolodzig
1.5. Components of a LMXB Click to enlarge the Picture X-Ray Binary Light-Curve Analysis - A.Kolodzig
1.6. Dynamics of a LMXB Video Credits: D. Klochkov 2008 X-Ray Binary Light-Curve Analysis - A.Kolodzig
1.7. Discovery (1/2) Early in 1985: • esa x-ray satellite EXOSAT (1983 - 1986) • open detecor while a maneuver • detects uncatalogued x-ray source • Identifier: Mr. Arvind Parmer X-Ray Binary Light-Curve Analysis - A.Kolodzig
1.7. Discovery (2/2) • First Light-Curve (by EXOSAT) Burst Dip Eclipse Credit: Parmer et al. 1986 X-Ray Binary Light-Curve Analysis - A.Kolodzig
1.8. Main Features • „light curve show a remarkable amount of structure“ (Parmar et al. 1985) • sharp x-ray and broad optical eclipses phase depending analysis • strong, irregular and periodic dipping activity • frequent x-ray burster with doublets & triplets • system remain active since discovery X-Ray Binary Light-Curve Analysis - A.Kolodzig
2. Light-Curve – Analysis2.1 my main Project-Tasks • creation and validation of the opitcal light curves (LC‘s) • burst-deleting & folding of x-ray & optical LC‘s • compare of the x-ray & optical LC‘s • modeling of bursts & eclipses in x-ray LC‘s X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.2. Light-Curves Creation 2.2.1. XMM-Newton Satellite (1/2) • general description of the satellite with a picture • 5 independent X-RAY cameras • EPIC MOS1, MOS2 (Array of 7 CCDs) • EPIC PN (Array of 12 CCDs) • RGS1, RGS2 High resolution spectroscopy • Wavelength - Range: 0.1 - 15 keV • 1 independent Optical/UV monitor (OM) X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.2.1. XMM-Newton Satellite (1/2) Figure from Harsit Patel Image courtesy of dornier satellitensysteme GmbH X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.2.3. Optical Light-Curves (1/2) • Observation-Date • in ‘Image+Fast Mode’ • high time resolution • White Filter • high intensity X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.2.3. Optical Light-Curves (2/2) • Light Curve Extraction • SAS (Science Analysis Software) task ’omfchain‘ • automatically source & background selection • time sampling: 1 second • good signal-to-noise ratio • following inspection of the correct selection • SAS task ‘barycen’ • time correction to the ‘solar system barycentre’ X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.2.5. Observation-Log • Observations 1 - 4 within 6 days! Comment: In all cases the EPIC pn was operated in Small Window Mode with the Medium Filter and the OM in Image+Fast Mode with the White Filter In all cases the EPIC pn was operated in Small Window Mode with the Medium Filter and the OM in Image+Fast Mode with the White Filter. X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3. Modeling & Analysis • plot of 4 curves in a square: LC Continuum, Folded, one Eclipse, one Burst (always top xray, bottom optical) X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.1.a) x-ray Continuum (1/2) X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.1.a) x-ray Continuum (2/2) Double Burst Trible Burst Trible Burst X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.1.b) optical Continuum (1/2) X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.1.b) optical Continuum (2/2) Double Burst Trible Burst Trible Burst X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.1.c) optical & x-ray Continuum Double Burst Trible Burst Trible Burst X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.2.a) x-ray Eclipses (1/2) X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.2.a) x-ray Eclipses (2/2) Egress Ingress X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.2.b) optical Eclipses X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.2.c) Eclipses Results (1/2) • X-ray: Hard-Band (5-10 keV) • less Dip effected • Eclipses not total • evidence of a ‘Corona’ • Flux (Hard-Band):0.24 0.20 Count/s • Continuum Flux: 5,5% • Mean-Duration: 496 10 s (8.30.2 min) • Parmer et al. 1991: 492 4.9 s • from End Ingress to Start Egress X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.2.c) Eclipses Results (2/2) • Period (x-ray): 13766.74 0.06 s (of 42 Eclipse in 54 days) (3,824094 0,000017 hours) • Parmer et al 1991: 13766,780 0,002 s (of 33 Eclipses in 4.1 years; linear Ephemeris) X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.3. optical LC Modeling • simple Model: C - Constant A - Amplitude xo - Phase-Shift p - Period • Periods: X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.4.a) Burst Modeling OID: 160760201 X-Ray: with pile-up correction X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.4.b) Position & Risetime X-Ray: with pile-up correction X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.4.c) Burst Delay X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.4.d) optical Risetime X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.5. Folded Light Curve X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.5. Folded Light Curve X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.3.6. Result-Summary • main new results??? X-Ray Binary Light-Curve Analysis - A.Kolodzig
2.4. Further Analysis • timing, super-period • bursts-decay-modeling phase • periodic dips • better model for the optical LC’s • ??? X-Ray Binary Light-Curve Analysis - A.Kolodzig