1 / 80

EKONOMİK MODELLEME: MODEL KURMA, TANI KOYMA SINAMALARI

EKONOMİK MODELLEME: MODEL KURMA, TANI KOYMA SINAMALARI. Zeynep ERGİN. Klasik doğrusal regresyon modelinin varsayımlarından biri çözümlemede kullanılan bağlanım modelinin “ DOĞRU” kurulduğudur. Model doğru kurulmamışsa model kurma hatası ya da model kurma sapkısına düşmüş oluruz.

mora
Download Presentation

EKONOMİK MODELLEME: MODEL KURMA, TANI KOYMA SINAMALARI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. EKONOMİK MODELLEME:MODEL KURMA, TANI KOYMA SINAMALARI Zeynep ERGİN

  2. Klasik doğrusal regresyon modelinin varsayımlarından biri çözümlemede kullanılan bağlanım modelinin “ DOĞRU” kurulduğudur. Model doğru kurulmamışsa model kurma hatası ya da model kurma sapkısına düşmüş oluruz. Bu bölümde bu varsayıma daha eleştirel olarak bakacağız ve şu sorunları ele alacağız;

  3. Doğru model nasıl bulunur? Başka bir deyişle görgül çözümlemeler için bir model seçmenin ölçütleri nelerdir? • Uygulamada ne tür model kurma hatalarıyla karşılaşmak olasıdır? • Model kurma hatalarının doğurduğu sonuçlar nelerdir? • Model kurma hataları nasıl tanınır? Başka bir deyişle, kullanılabilecek bazı tanı koyma araçları nelerdir?

  4. Model kurma hataları bulununca hangi düzeltme yolları kullanılabilir,bunlar ne gibi yararlar sağlar? • Rakip modellerin başarımı nasıl değerlendirilir?

  5. 13.1 Model Seçme Ölçütleri Hendry ve Richard’a göre görgül çözümlemeler için seçilmiş bir model şu ölçütlere uygulanmalıdır. • Verileri kabul edebilmeli: modelin kestirimleri mantığa uymalıdır. • Kuramla uyumlu olmalı: iktisadi bakımdan anlamlı olmalıdır. • Açıklayıcı değişkenler olabildiğince dışşal olmalıdır: açıklayıcı değişkenler hata terimiyle ilişkisiz olmalıdır.

  6. Katsayıları değişmezlik göstermeli: katsayı değerleri karalı olmalıdır. Aksi halde kestirim zorlaşır. Friedman’ın belirttiği gibi “ bir önsavın geçerliliği için en uygun sınama kestirimlerinin karşılaştırılmasıdır.” katsayı değişmezliği yoksa kestirimlerde güvenilmez olur. • Verilere uyum göstermeli: modelin tahmin ettiği kalıntılar bütünüyle rassal (teknik adıyla beyaz gürültülü) olmalıdır. Diğer bir deyişle regresyon modeli yeterliyse bu modelin kalıntıları beyaz gürültülü olmalıdır. Eğer değilse burda bir model kurma hatası söz konusudur.

  7. Kapsayıcı olmalı: yani modelimiz bütün rakip modelleri , onların sonuçlarını da açıklayabilme anlamında kapsamlı olmalıdır. Kısaca diğer modeller seçilen modelden daha gelişkin olmalıdır.

  8. 13.2 Model Kurma Hatalarının Türleri Model seçme ölçütlerine göre iyi bir model olarak kabul edilebilecek bir model bulduğumuzu düşünelim ve modelimiz; Y: toplam üretim maliyeti X: üretim

  9. Ancak bir nedenle başka bir model kullanmaya karar verdik ve modelimiz; Bu modeli doğru modelden ayırmak için simgeleri değiştirdiğimize dikkat edelim. (13.2.1) doğru varsayıldığına göre (13.2.2)’ yi benimsemek model kurma hatası, ilgili değişkeni dışlama hatası oluşturacaktır.

  10. Öyleyse (13.2.2)’ deki hata terimi aslında şöyledir; Bir başka araştırmacının ise şu medeli kurduğunu düşünelim; Eğer gerçek (13.2.1) ise (13.2.4) de model kurma hatası söz konusudur. Bu kez hata gereksiz ya da ilgisiz bir değişkenin modele eklenmesidir.

  11. Çünkü doğru model ‘in sıfır olmasını öngörmektedir. Yani hata terimi gerçekte şöyledir. şimdi de üçüncü bir araştırmacının şu modeli öne sürdüğünü düşünelim; doğru modele göre (13.2.6)’da bir model kurma sapkısı oluşmuştur. Bu sapkı da yanlış fonksiyon kalıbı kullanılmasıdır. (13.2.1)’de Y doğrusal görünmekte oysa (13.2.6)’da logaritmalı görünmektedir.

  12. Son olarak şu modeli kullanan araştırmacıya bakalım; burada ölçme hatalarıdır. (13.2.7) asıl Y ve X yerine ölçme hataları içerebilen yaklaşık değerlerini kullanmadığımızı söylemektedir. Öyleyse (13.2.7)’de ölçme sapkısı hatası işlemekteyiz.

  13. Bir başka tür model kurma hatası, olasılıklı hata ‘nin modele nasıl girdiğiyle ilgilidir. Söz gelimi olasılıklı hata teriminin denkleme çarpan olarak girdiği ‘nin klasik doğrusal regresyon modelinin varsayımlarına uyduğu, sabit terimi olmayan iki değişkenli şu modeli Hata teriminin modele toplamayla eklendiği aşağıdaki modelle karşılaştıralım.

  14. Her iki modelde de değişkenler aynı olmakla birlikte eğim katsayısı (13.2.8)’ de ile (13.2.9)’da ile gösterilmiştir. Şimdi eğer (13.2.8) “doğru” yada “gerçek” modelse tahmin edilen , gerçek ‘nin sapkısız bir tahmini midir? Yani mıdır? Eğer değilse, hata teriminin uygun olmayan olası biçimi başka bir model kurma hatası oluşturur. Bazen göz ardı edilen bir model kuma hatası, açıklayıcı değişkenler arasındaki etkileşim yani bir ya da daha çok açıklayıcı değişkenin açıklanan değişken üzerindeki çarpımlı etkisidir.

  15. Konuyu toparlayacak olursak , bir modeli doğru model olarak belirledikten sonra şu belirleme hatalarından birini ya da birkaçını işleyebiliriz; • İlgili değişken(ler)in dışlanması. • Gereksiz değişken(ler)in kapsanması. • Yanlış fonksiyon kalıbının benimsenmesi. • Ölçme hatalarının yapılması. • Olasılıklı hata teriminin yanlış belirlenmesi. • Hata teriminin normal dağıldığı varsayımı.

  16. !! Model kurma hatası ile modeli yanlış kurma hatasını birbirinden ayırmak önemlidir.!! modelin doğru olup olmadığını tespit etmek için kullandığımız belirleme hatalarından ilk dört madde temelde model kurma hatasıdır.

  17. 13.3 Model Kurma Hatalarının Doğurduğu Sonuçlar Bu bölümde iki tür model kurma hatasını ayrıntılı olarak inceleyeceğiz. Bunlar; bir modeli eksik tanımlama yani ilgili değişkenleri dışlama. bir modeli aşırı tanımlama yani gereksiz değişkenleri kapsama hatalarını ayrıntılı olarak inceleme.

  18. Eksik Tanımlı Model (Gerekli Bir Değişkeni Dışlama) Doğru modelin şu olduğunu düşünelim; Ama herhangi bir nedenle şu modeli kullanalım;

  19. ‘ü dışlamanın doğurduğu sonuçlar şu şekildedir. • Eğer dışlana değişken modelde kalan değişken ile ilişkili ise, yani iki değişken arasındaki kolerasyon katsayısı sıfır değilse ile hem sapkılı hem tutarsızdır. yani ile durumu söz konusudur. Ayrıca örneklemi ne kadar büyütürsek büyütelim sapkı kaybolmaz.

  20. ile ilişkisiz bile olsa artık sapkısızdır ama hala sapkılıdır. • Bozucu terim varyansı yanlış tahmin edilmiştir. • nin alışıldık biçimde ölçülen varyansı doğru tahmin edici nin varyansının sapkılı tahmin edicisidir. 5. Bunların sonucunda bildik güven aralıklarıyla önsav sınaması süreçleri, tahmin edilen ana kütle katsayısının istatiksel anlamlılık konusunda yanıltıcı kararlara yol açabilir.

  21. Gereksiz Bir Değişkeni Ekleme(Aşırı Tanımlı Model) Modelimiz şu şekilde olduğunu düşünelim; ama biz aşağıdaki modeli kullanıyoruz; yani gereksiz bir değişkeni modele koyarak model kurma hatası işliyoruz.

  22. Model kurma hatasının doğuracağı sonuçlar; • “yanlış” modelin anakütle katsayısının SEK tahminlerinin hepsi hem sapkısız hem tutarlıdır. Yani • Hata varyansı doğru tahmin edilmiştir. • Alışıldık güven aralığı ile önsav sınaması süreçleri hala geçerlidir. • Ancak tahmin edilen ‘lar genellikle etkin değildir, yani varyansları, doğru modelin ‘larınınvaryanslarından genellikle büyüktür.

  23. Gerekli bir değişkeni dışlamaktansa gereksiz bir değişkeni modele katmak daha iyidir sonucuna varılması yanlış bir düşüncedir. Eğer bu düşünce benimsenecek olursa gereksiz değişkenleri modele koymak tahmin edicilerde etkinlik kaybına yol açacağı gibi bizi çoklu doğrusallık sorununa da götürebilir.

  24. 13.4 Model Kurma Hatalarının Sınanması Çoğu zaman model kurma sapkıları ya temeldeki kuramın zayıflığından ya da modeli sınamak için elverişli türden verileri bulamamaktan dolayı modeli olabildiğince doğru kurmaktaki yetersizliğimiz nedeniyle belki de kaçınılmaz olarak doğmaktadır. Model kurma hatalarının yapıldığı anlaşıldığında düzeltici önlemlerin ne olabileceği ortaya çıkmıştır.

  25. Gereksiz Değişkenlerin Var Olup Olmadığını Aramak ( bir modeli aşırı tanımlamak) Bu olguyu açıklayabilmek için “k” değişkenli bir model geliştirdiğimizi düşünelim. ancak değişkeninin gerçekten burada olması gerektiğinden emin değiliz. Bunu anlayabilmenin yolu ‘nin anlamlılığını t sınaması ile sınamaktır.

  26. ama ‘ünde modelde olmasında emin değiliz. Burada da F sınaması yaparak ün modelde olup olmayacağına karar verebiliriz.

  27. Dışlanmış Değişkenler ve Yanlış Fonksiyon Kalıpları İçin Sınamalar Uygulamada görgül sınama için benimsenen modelin “gerçek” olduğundan hiçbir zaman emin olamayız. Kurama, içsel incelemeye ve önceden yapılmış görgül çalışmalara dayanarak, incelenen konunun özünü yakaladığına inandığımız bir model kurarız. Sonra bu modeli görgül olarak sınarız. Bulguları elde edince daha önce tartıştığımız iyi bir modelin ölçütlerini göz önünde tutarak ardıl incelemelere başlarız.

  28. Modelin yeterliliğine karar verirken değeri tahmin edilen t oranları, tahmin edilen katsayıların önsel beklentilerle karşılaştırılan işaretleri, Durbin Watson istatistiği vb gibi sonuçların bazı özelliklerine bakarız. Eğer bu tanı değerleri makul ölçüde iyiyse seçilen modelin gerçeğe uygun bir yansıması olduğunu ileri süreriz. Aynı biçimde değeri çok düşük ya da çok sayıda katsayı istatistik bakımından anlamlı yahut doğru işaretli veya Durbin Watson d değeri çok küçük olduğundan bulgular yüklendirici görünmüyorsa , modelin yeterliliğinden kuşku duyar, düzeltme yollarını ararız.

  29. Kalıntıların İncelenmesi 12. bölümde belirtildiği gibi ardışık ilişkiyi ya da değişen varyansı ararken kalıntılarını incelemek iyi bir görsel tanı aracıdır. Ama bu kalıntılar özellikle kesit verilerinde önemli bir değişkenin dışlanması ya da yanlış fonksiyon kalıbının seçimi gibi model kurma hataları içinde incelenebilir. Bunu açıklamak için küplü toplam üretim maliyeti fonksiyonuna geri dönelim.

  30. Doğru toplam maliyet fonksiyonun şöyle olduğunu düşünelim; Y: Toplam maliyet X: Üretim Diğer bir araştırmacı ise ikinci dereceden bir model; bir diğer araştırmacı da şu doğrusal modeli benimsemiş olsun;

  31. Soldan sağa doğru ilerledikçe yani gerçeğe yaklaştıkça kalıntılar (mutlak değer olarak) küçülmekle birlikte yanlış kurulmuş modellerdeki çevrimsel salınımlarıda göstermiyor.

  32. Model kurma hatalarını aramak için Durbin Watson sınamasını kullanırken şu adımları izleriz. • Düşünülen modelden SEK tahmin edicileri bulun. • Gerekli bir değişkenin, diyelim Z’nin dışarıda kalması nedeniyle modelin yanlış kurulduğuna inanılıyorsa 1. adımda bulunan kalıntıları Z’nin artan değerlerine göre sıralanır. • Bu yolla sıralanan kalıntılardan d formülü ve d istatistiği hesaplanabilir.

  33. Ramsey’in (RESET) Sınaması Ramsey model kurma hataları için bağlanımda model kurma hatası denen genel bir sınama önermiştir. Konuyu somutlaştırmak için maliyet- üretim örneğini sürdürüp maliyet fonksiyonunun üretime göre doğrusal olduğunu düşünelim. Y: Toplam maliyet X: Üretim

  34. Bu bağlanımdan bulduğumuz kalıntılarını, nin bu modelden tahmin edilen değerlerine göre çizersek çizim( 13.2)’yi elde ederiz. İle zorunlu olarak 0 oldukları halde bu çizimdeki kalıntılar kendi ortalamalarının ‘ye bağlı olarak düzenli değiştiği bir örüntü gösterir. Bunun anlamı ‘yibirşekilde (13.4.6)’ya bir açıklayıcı değişken olarak sokarsak ‘nin yükseleceğidir. Eğer deki bu artış F sınamasına göre anlamlı olsa bile (13.4.6) ‘daki doğrusal maliyet fonksiyonu yanlış kurulmuştur.

  35. Bağlanımda model kurma hatası sınamasının adımları • Seçilen modelden (13.4.6)’dan tahmin edilen ‘leri yani ‘leri bulun. • Bu ‘leri bir biçimde ek açıklayıcı değişken olarak katılıp (13.4.6)’yıyeiden hesaplayın. Çizim 13.2’den ‘lerle ‘ler arasında eğrisel bir ilişki olduğu görülmektedir, bu da ile ‘ün ek açıklayıcı değişkenler olarak modele katılması gereğine işaret etmektedir. Bu durumda şu denklem hesaplanır;

  36. 3. (13.4.7)’den elde edilen ‘ye yeni (13.4.6)’dan elde edilen d eski diyelim. Artık (13.4.7)’yi kullanmakla ‘de ortaya çıkan artışın istatik bakımından anlamlı olup olmadığını anlamak için F sınamasını ilk kez (8.4.18)’de gösterildiği biçimde şöyle uygulayabiliriz.

  37. 4. Hesaplanan F değeri, diyelim %5 düzeyinde anlamlıysa (13.4.6) modelinin yanlış kurulduğunu ileri süren önsavı kabul edebiliriz. Açıklayıcı örneğimize dönersek şu bulguları elde ederiz;

  38. F sınamasını uygulayarak elde edeceğimiz sonuç; burada F değerinin anlamlı olduğunu dolayısıyla da (13.4.8) modelinin yanlış olduğunu görürüz

  39. Değişken Eklemede Lagrange Çarpanı Sınaması Lagrange sınaması Ramsey’in bağlanımda model kurma hatası sınamasına karşı bir almaşıktır. sınırlandırılmış bağlanım, kareli ve küplü üretim terimleri katsayılarının sıfıra eşit olduğunu varsayar. Bunu sınamak için LÇ sınaması şu şekilde yapılır;

  40. Sınırlandırılmış (13.4.6) bağlanımını SEK ile tahmin edip kalıntıları bulunur. • Sıralanmamış (13.4.6) regresyonu doğru regresyon ise (13.4.6)’dan bulunan kalıntıların kareli ve küplü üretim terimleriyle yani ile ilişkili olması gerekir. • Bu da 1. adımdan elde edilen kalıntılarının bütün açıklayıcı değişkenlere göre regresyonunu bulmamız gerektiği anlamına gelir.

  41. 4. Engle, büyük örneklemlerde n ile (13.4.11) regresyonunda tahmin edilen çarpımının, sınırlı bağlanımca belirlenen sınır sayısına eşit sd ile ki-kare dağılımına uyduğunu göstermiştir. 5. (13.4.12)’den elde edilen ki-kare değeri, seçilen anlamlılık düzeyinde eşik ki-kare değerinden büyükse sıralanmış regresyonu reddederiz. Tersi durumunda ise reddedemeyiz.

  42. örneğimizde regresyon bulguları şu şekildedir; burada Y: toplam maliyet X: üretimdir. Bu bağlanım hataları çizelge 13.1 de verilmişti. (13.4.13)’ten bulunan kalıntıların 3. adımda önerildiği gibi bağlanımı hesaplanırsa şu bulgular ortaya çıkar;

  43. 13.5 Ölçme Hataları Şimdiye kadar incelediğimiz örneklerde bağımlı değişken Y ile açıklayıcı değişkenler olan X’lerin hatasız ölçüldüklerini varsaydık. Verilen bütün değişkenlerle ilişkin verilerin “kesin doğru” olduklarını varsaydık. Bildirim hataları hesaplama hataları gibi çeşitli nedenlerle kusursuzluk sağlanılamamaktadır.

  44. Bağımlı değişken Y’deki Ölçme Hataları Şu modeli ele alalım; : sürekli tüketim harcaması : cari gelir : olasılıklı bozucu terim

  45. doğrusal ölçülemediğinden gözlenebilen şöyle bir değişkeni kullanabiliriz. burada deki ölçme hatasını gösterir. Dolayısıyla (13.5.1) yerine şunu tahmin ederiz;

  46. Açıklayıcı Değişken X’teki Ölçme Hataları Modelimizin yerine şu model olduğunu düşünelim; : cari tüketim harcaması : sürekli gelir : bozucu terim

  47. yerine şunu gözlemlediğimizi düşünelim; burada ‘deki ölçme hatasını gösterir. Dolayısıyla (13.5.6)yerine şunu tahmin ederiz;

  48. !! Ölçme hataları sorununa tam anlamıyla çözüm olabilecek yanıt yoktur. Bu sebeple de verileri mümkün olduğu kadar doğru ölçmek büyük önem taşır.!!

More Related