430 likes | 575 Views
Fluorescent Chemosensors for Biology: Visual Snapshots of Intramolecular Kinase Activity at the Onset of Mitosis Zhaohua Dai Department of Chemistry & Physical Sciences, NY. Research Interests. Fluorescent probes for kinase activity in live cells. Fluorescent and chiroptical
E N D
Fluorescent Chemosensors for Biology: Visual Snapshots of Intramolecular Kinase Activity at the Onset of Mitosis Zhaohua DaiDepartment of Chemistry & Physical Sciences, NY
Research Interests Fluorescent probes for kinase activity in live cells Fluorescent and chiroptical probes for metal ions Zn2+, Mn2+, Hg2+ Tyrosine Kinase, PKC Das, D.; Dai, Z.; Holmes, A. E.; Canary, J. W. Chirality, 2008, 20, 585-591. Dai, Z.; Canary, J. W. New J. Chem.2007, 31, 1708-1718. Royzen, M.; Dai, Z.; Canary, J. W. J. Am. Chem. Soc.2005, 127, 1612-1613. Dai, Z.; Xu, X.; Canary, J.W. Chirality2005, 17, S227-233. Dai, Z.; Proni, G.; Mancheno, D.; Karimi, S.; Berova, N.; Canary, J.W. J. Am. Chem. Soc., 2004,126, 11760 Dai, Z.; Xu, X.; Canary, J. W. Chemical Communications2002, 1414-5. Dai, Z.; Dulyaninova, N. G.; Kumar, S.; Bresnick, A. R.; Lawrence, D. S. Chem. & Biol.2007, 14, 1254-1260. Wang, Q.; Dai, Z.; Cahill, S. M.; Blumenstein, M.; Lawrence, D. S. J. Am. Chem. Soc.2006, 128, 14016-14017.
Zinc in Brain • More Zn2+ in brain than in any other organ • Zn2+ and Cu2+ are implicated in Alzheimer’s, Parkinson’s, and Amyotrophic Lateral Sclerosis (ALS) • Complicated roles • Tools needed to image Zn2+ distribution and kinetics High sensitivy Poor Zn(II)/Cu(II) selectivity TSQ, Zinquin
Tailoring Tripodal Ligands for Zinc Sensing Zhaohua Dai and James W. Canary, New J. Chem., 2007, 31, 1708-1718.
Chiral Fluorescent Probes for Zn2+ Higher Zn2+/Cu2+Selectivity Stereochemical Control 2. Better contrast Fertile Optical Information: Differential Circularly Polarized Fluorescence Excitation (CPE)
Stereochemical Approach to Improved Zn(II)/Cu(II) Selectivity Zn2+ 11.0 7.1 8.95 Cu2+ 16.157.17.0 10-5 1 90* logb Zn2+/Cu2+ Selectivity: 15% acetonitrile/aqueous buffer pH 7.19 * Z. Dai, et al. unpublished
Fluorescence-detected Circular Dichroism (FDCD) DF = J-8100 Circular Dichroism System with FDCD Attachment Two channels of data Nehira; Berova; Nakanishi; et al. J. Am. Chem. Soc. 1999, 121, 8681
Differential Circularly Polarized Fluorescence Excitation (CPE) CPE utilized only DF part of FDCD raw data for analysis. q: CD ellipticity; F: Fluorescence quantum yield. Changes in DF will be very large when changes in BOTH fluorescence AND circular dichroism are large.
Zn2+ CPE Reduces Background from Free Ligand Ellipticity /mdeg Relative Intensity If Zn2+ /nm /nm [Zn(L)]2+ Zn2+ CPE F Dai, Z.; Proni, G.; Mancheno, D.; Karimi, S.; Berova, N.; Canary, J.W. J. Am. Chem. Soc., 2004,126, 11760 Free ligand /nm
CPE SELECTS AGAINST PROTEIN-BASED BACKGROUND FLUORESCENCE Zn2+ Relative Intensity If Ellipticity /mdeg Zn2+ Lysozyme /nm /nm Lysozyme CPEF Lysozyme + [Zn(L)]2+ Zn2+ Dai, Z.; Proni, G.; Mancheno, D.; Karimi, S.; Berova, N.; Canary, J.W. J. Am. Chem. Soc., 2004,126, 11760 /nm
Chiral Fluorescent Sensor for Hg2+ We intend to use these ligands to further develop CPE.
ColorimetricMn(II)Sensor 5-Br-PAPS-Zn(II)-EGTA Displacement system
Achieved solid Zn(II)/Cu(II) selectivity through a stereochemical approach Developed a new approach for analysis: CPE CPE may be used to improve contrast in detecting metal ions by fluorescent, chiral ligands with low background CPE may be used to diminish interference from fluorescent non-analytes CPE needs further development Summary for Metal Sensors
Caged Sensors for Kinase Activity Snapshots of PKC Activity at the Onset of Mitosis Light-Regulated Sampling of Protein Tyrosine Kinase Activity Dai, Z.; Dulyaninova, N. G.; Kumar, S.; Bresnick, A. R.; Lawrence, D. S. Chem. & Biol.2007, 14, 1254-1260. Wang, Q.; Dai, Z.; Cahill, S. M.; Blumenstein, M.; Lawrence, D. S. J. Am. Chem. Soc.2006, 128, 14016-14017.
Protein Kinase C • Cell proliferation, apoptosis, differentiation, migration • Cause cancer, etc. • Tools are needed for probing, therapeutics Nakashima, S. J. Biochem.2002, 132, 669-675.
PKC in Early Mitosis (G2/M) Review: Black, J. D. Front. Biosci.2000, 5, 406-423 P. Collas et al J. Cell Sci. 1999, 112, 977-987.
PKC bII in G2/M Transition 85K Target: lamin B Ser405 nocodazole Chelerythrine Km (mM): 4.9 (soluble) and 3.9 (envelope). IC50: 16 mM Chelerythrine (PKC b inhibitor ????) A. P. Fields et al. J. Biol. Chem.1994, 269, 19074-19080. A. P. Fields et al. J. Biol. Chem.1996, 271, 15045-15053.
NBD-based Fluorescent Sensor for PKC VIP NBD-peptide Km(mM) Yeh, R.-H.; Yan, X.; Cammer, M.; Bresnick, A. R.; Lawrence, D. S. J. Biol. Chem.2002, 277, 11527-11532
Caged PKC Sensor KVIP Veldhuyzen, W. F. et alJ. Am. Chem. Soc.2003, 125, 13358-13359
Why Caged Sensors • In cuvette: investigator controls the start and stop of enzyme catalyzed rxns • In live cell: the cell controls the timing and during • Caged sensors can be delivered in inert forms and activated on demand • Give precise temporal control over sensor activity
Real-time temporal probing of PKC activity Veldhuyzen, W. F. et alJ. Am. Chem. Soc.2003, 125, 13358-13359
Studying Mitosis Microinjection PtK2 Cells: flat Kangroo rat didney epithelial cells KVIP
PKC in PtK2 S. Kumar
VIP PKC Activity q* Other kinases: Akt-1, AurB, Cdc-2, Plk1 (do not work on VIP) Nek2 (weakly) S. Kumar
Coinjection of 200 mM KVIP and 5 mM 70K dalton texas red-dextran Green Fl NBD Red Fl 70K dextran- Texas red 2 min uncaging 0 min injection 3 min before
5 min 7 min 4 min 6 min
Coinjection of 200 mM KVIP and 5 mM 70K dalton texas red-dextran 0 min injection 2 min uncaging 25 min
Injection with 200 mM KVIP before NEBD 1.PKC activity accompanies NEBD. Which one? 2. PKC activity levels off after NEBD: PKC off? or Sensor gone?
0 min injection 2 min uncaging 11 min Coinjection of 200 mM KVIP and 5 mM 70K dalton texas red-dextran (uncaging after NEBD )
Injection with 200 mM KVIP (Uncaging after NEBD) • No PKC activity • right after NEBD? • 2. Both PKC and • phosphatase are active?
Incubation with 1.5 mM okadaic acid Phosphatase inhibited No PKC activity right after NEBD.
High PKCb inhibitor concentration (12 mM) induced or blocked cells at prophase a bII i m q z Nek2 1.3 mM 11 nM no obs. inhibition IC50 S. Kumar PKC a, b might be implicated in NEBD. Which one? 65% of the cells (20 out of 31) are stuck at prophase Tanaka, M. et al. Bioorg. Med. Chem. Lett. 2004, 14, 5171-5174
Coinjection w/ 2 mM PKCa inhibitor and 200 mM KVIP, 5 mM 70K Texas ted-dextran PKCa IC50 (mM) Ki (mM) PKCb385-fold PKCg580-fold PKCd 2730-fol PKCe 600-fol PKCh 1310-fold PKCq 1210-fold PKCi 940-fold PKCz 640-fold 0.0019 0.00080 Lee, Nandy, Lawrence. JACS, 2004
Coinjection w/ 2 mM PKCa inhibitor and 200 mM KVIP, 5 mM 70K rhodamine-dextran (No NEBD) 0 min injection 2 min uncaging 30 min
Coinjection of 2 mM PKCa inhibitor and 200 mM KVIP When PKCs are shutdown, NEBD is blocked w/o FL enhancement.
Co-injection of 1 mM PKCa inhibitor and 200 mM KVIP 2 min 5 min 9 min 3 min 6 min 13 min 0 min injection 4 min 7 min 14 min Texas-red fluorescence
Co-injection of 1 mM PKCa inhibitor and 200 mM KVIP PKC a shutdown PKC b is responsible for NEBD and FL b1 or b2?
Redistribution of PKCbI and PKCbIIIn Cell Cycle b1: associated w/ nucleus in interphase and prophase. b2: everywhere in interphase Partial relocation to nuclear boundary in prophase. Significant for NEBD? N. G. Dulyaninova
Conclusion for Caged PKC Sensor • Caged sensors can be used to probe PKC activity at G2/M in live cells with temporal precision, providing a way to interrogate enzymatic activity at any point during the cell-division cycle. • PKCb is implicated in NEBD of PtK2 cells. It is active just prior to NEBD, not immediately after.
Acknowledgement • Prof. James W. Canary (NYU) • Prof. David S. Lawrence (Einstein, UNC) • Dr. Williem Veldhuyzen, Dr. Sandip Nandy • Prof. Sanjai Kumar • Prof. Anne R. Bresnick (Einstein) • Dr. Natalya G. Dulyaninova • Dr. Zhonghua (Alice) Li • Mike Isaacman • Cho Tan • Amanda Mickley • Patrick Carney • Nikhil Khosla • Pace Colleagues • Prof JaimeLee I. Rizzo NSF (JWC) NIH (DSL, ARB, JWC) Pace University (Startup Fund, Scholarly Research Fund, Kenan Award)