230 likes | 347 Views
Flexible Renewables in the Electricity System. Dr.-Ing. C. Wieland Sebastian Eyerer, M.Sc . Prof. Dr.-Ing. H. Spliethoff Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Energiesysteme Brussels , 10. January 2019. Outline. User Behaviour
E N D
Flexible Renewables in theElectricity System • Dr.-Ing. C. Wieland • Sebastian Eyerer, M.Sc. • Prof. Dr.-Ing. H. Spliethoff • Technische Universität München • Fakultät für Maschinenwesen • Lehrstuhl für Energiesysteme • Brussels, 10. January 2019
Outline • User Behaviour • Control Power as Such • Key IssuesLearnedFrom Germany • ExamplesofSuitable Technologies • Sustainability in Energy Transition Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
1. Electricitydemandof individual households Load/demandisfluctuatingdepending on userbehavior Standard loadprofilesarederived, somehowapproximateorforecastthedemand Stochasticuserbehaviorissuperpositioned Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
1. Electricitydemand in Germany Source: https://www.energy-charts.de/power.htm Wind variessignificantly, solar haslowcontributions, coaland gas areenablingintegration Daily fluctuations Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
1. Electricitydemand in Germany Source: https://www.energy-charts.de/power.htm Wind and solar varysignificantly, coaland gas areenablingintegration Uptotwosignificantfluctuations per day, due to high solar share Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
2. Typesofcontrol power Power Primary control power Secondarycontrol power Minute reserve power Time Source: [1] Unscheduled power plant outages Load fluctuations Forecastingerrorsofload Forecastingerrorsofrenewableenergyproduction Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
Control power canbepurchased on markets, providedby power plants
3. LocalImbalances I National imbalancesbetweensupplyanddemand (Wind: North, Demand: South) Electricitygridlimitationscauseelectricityflowthroughgrids in neighboring countries Frequentfraudscause „protectionism“ byinstallationofquadratureboosters/phaseshifters Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
3. LocalImbalances II National imbalancesbetweensupplyanddemand (Wind: North, Demand: South) Wind plantsarecurtailedand fossil reserve power isactivated. Double costsforwasted RES andredispatched (fossil) reserve power Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
3. No Wind (andno PV) Low wind conditionsleadtoshortage in power supply Reduced (fossil) generationcapacitycannotfullycompensate Neighboring countries needtoprovideelectricitywiththeirgenerationcapacity Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
Weneed (1) morelocalrenewableanddispatchablecapacitiesand (2) togeneratelocalmicrogrids
4. Example: Biomass IncreasingICEngineand/or Biogas tank forenablingflexibility potential Source: adaptedfrom [2] and [3] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
4. Example: Geothermal CHP Source: [4] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
4. Example: Geothermal CHP Industrial wasteheat Heatpumps Increasingtheflexibilityofrenewable CHP technologyforenablingflexibility potential Power-to-heat Heatstorage Source: [4] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
4. Example: Aggregators (e.g. Next Kraftwerke) • Biogas CHP • PV Systems • Wind power plants • Natural gas CHP • Dispatchableplants • Hydroplants • Large scalerenewableplants • Energy intesiveindustry Source: [5] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
4. Example: Aggregators (e.g. Next Kraftwerke) • Pooling generationcapacity • Placingcontrol power on markets • Restrictionsformarketaccess in Germany: • 5 MW (until 2018) • 1 MW (from 2018) • What‘supnext? Source: [5] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
5. Costs vs. Sustainability • Triple-Bottom-Line • Eachsectionistreatedequallyandof same importance. • Priority Modell • Sections will beprioritizedwithincreasedimportance Social Environmental Financial Environ-mental Social Financial Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
Weneedtoreconsidertheimportanceof environmental issues in a sustainabledevelopment.
References • [1] Eyerer et al.: Praxisforum Geothermie.Bayern 2017 • [2] Schuster et al.: Energetic and economic investigation of Organic Rankine Cycle applications, Applied Thermal Engineering, 29 (2009), pp. 1809–1817 • [3] J. Karl, Dezentrale Energiesysteme, Neue Technologien im liberalisierten • Energiemarkt, Oldenbourg Verlag, München, 2004 • [4] Dawo: Strom aus Geothermie – Stromwäsche oder reales Potential?, Seminarvortrag, Lehrstuhl für Energiesysteme, 19.10.2018 • [5] Aengenvoort: Next Kraftwerke – Intelligente Kombination Erneuerbarer/Konventioneller Technik / Insellösungen, Vortragsreihe des VDI-AK Energietechnik und des Lehrstuhls für Energiesysteme, München, 14.03.2016 Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland
Flexible Renewables in theElectricity System • Dr.-Ing. C. Wieland • Sebastian Eyerer, M.Sc. • Prof. Dr.-Ing. H. Spliethoff • Technische Universität München • Fakultät für Maschinenwesen • Lehrstuhl für Energiesysteme • Brussels, 10. January 2019
Back-Up RE Costs Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland