1 / 23

Flexible Renewables in the Electricity System

Flexible Renewables in the Electricity System. Dr.-Ing. C. Wieland Sebastian Eyerer, M.Sc . Prof. Dr.-Ing. H. Spliethoff Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Energiesysteme Brussels , 10. January 2019. Outline. User Behaviour

munin
Download Presentation

Flexible Renewables in the Electricity System

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Flexible Renewables in theElectricity System • Dr.-Ing. C. Wieland • Sebastian Eyerer, M.Sc. • Prof. Dr.-Ing. H. Spliethoff • Technische Universität München • Fakultät für Maschinenwesen • Lehrstuhl für Energiesysteme • Brussels, 10. January 2019

  2. Outline • User Behaviour • Control Power as Such • Key IssuesLearnedFrom Germany • ExamplesofSuitable Technologies • Sustainability in Energy Transition Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  3. 1. Electricitydemandof individual households Load/demandisfluctuatingdepending on userbehavior Standard loadprofilesarederived, somehowapproximateorforecastthedemand Stochasticuserbehaviorissuperpositioned Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  4. Electricity demand depends on weather and user behavior.

  5. 1. Electricitydemand in Germany Source: https://www.energy-charts.de/power.htm Wind variessignificantly, solar haslowcontributions, coaland gas areenablingintegration Daily fluctuations Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  6. 1. Electricitydemand in Germany Source: https://www.energy-charts.de/power.htm Wind and solar varysignificantly, coaland gas areenablingintegration Uptotwosignificantfluctuations per day, due to high solar share Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  7. Electricityproductionneedstofulfilthedemand at any time.

  8. 2. Typesofcontrol power Power Primary control power Secondarycontrol power Minute reserve power Time Source: [1] Unscheduled power plant outages Load fluctuations Forecastingerrorsofload Forecastingerrorsofrenewableenergyproduction Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  9. Control power canbepurchased on markets, providedby power plants

  10. 3. LocalImbalances I National imbalancesbetweensupplyanddemand (Wind: North, Demand: South) Electricitygridlimitationscauseelectricityflowthroughgrids in neighboring countries Frequentfraudscause „protectionism“ byinstallationofquadratureboosters/phaseshifters Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  11. 3. LocalImbalances II National imbalancesbetweensupplyanddemand (Wind: North, Demand: South) Wind plantsarecurtailedand fossil reserve power isactivated. Double costsforwasted RES andredispatched (fossil) reserve power Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  12. 3. No Wind (andno PV) Low wind conditionsleadtoshortage in power supply Reduced (fossil) generationcapacitycannotfullycompensate Neighboring countries needtoprovideelectricitywiththeirgenerationcapacity Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  13. Weneed (1) morelocalrenewableanddispatchablecapacitiesand (2) togeneratelocalmicrogrids

  14. 4. Example: Biomass IncreasingICEngineand/or Biogas tank forenablingflexibility potential Source: adaptedfrom [2] and [3] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  15. 4. Example: Geothermal CHP Source: [4] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  16. 4. Example: Geothermal CHP Industrial wasteheat Heatpumps Increasingtheflexibilityofrenewable CHP technologyforenablingflexibility potential Power-to-heat Heatstorage Source: [4] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  17. 4. Example: Aggregators (e.g. Next Kraftwerke) • Biogas CHP • PV Systems • Wind power plants • Natural gas CHP • Dispatchableplants • Hydroplants • Large scalerenewableplants • Energy intesiveindustry Source: [5] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  18. 4. Example: Aggregators (e.g. Next Kraftwerke) • Pooling generationcapacity • Placingcontrol power on markets • Restrictionsformarketaccess in Germany: • 5 MW (until 2018) • 1 MW (from 2018) • What‘supnext? Source: [5] Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  19. 5. Costs vs. Sustainability • Triple-Bottom-Line • Eachsectionistreatedequallyandof same importance. • Priority Modell • Sections will beprioritizedwithincreasedimportance Social Environmental Financial Environ-mental Social Financial Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  20. Weneedtoreconsidertheimportanceof environmental issues in a sustainabledevelopment.

  21. References • [1] Eyerer et al.: Praxisforum Geothermie.Bayern 2017 • [2] Schuster et al.: Energetic and economic investigation of Organic Rankine Cycle applications, Applied Thermal Engineering, 29 (2009), pp. 1809–1817 • [3] J. Karl, Dezentrale Energiesysteme, Neue Technologien im liberalisierten • Energiemarkt, Oldenbourg Verlag, München, 2004 • [4] Dawo: Strom aus Geothermie – Stromwäsche oder reales Potential?, Seminarvortrag, Lehrstuhl für Energiesysteme, 19.10.2018 • [5] Aengenvoort: Next Kraftwerke – Intelligente Kombination Erneuerbarer/Konventioneller Technik / Insellösungen, Vortragsreihe des VDI-AK Energietechnik und des Lehrstuhls für Energiesysteme, München, 14.03.2016 Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

  22. Flexible Renewables in theElectricity System • Dr.-Ing. C. Wieland • Sebastian Eyerer, M.Sc. • Prof. Dr.-Ing. H. Spliethoff • Technische Universität München • Fakultät für Maschinenwesen • Lehrstuhl für Energiesysteme • Brussels, 10. January 2019

  23. Back-Up RE Costs Technische Universität München | FlexiRES, Brussels 10.01.2019 | Christoph Wieland

More Related