150 likes | 284 Views
Three-body resonance in the KNN-π Y N coupled system. Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary. Y. Ikeda and T.Sato (Osaka Univ.). 1. Our Motivation. Kaon absorption?? (Magas et al.). Λ(1405). K - pp system.
E N D
Three-body resonancein the KNN-πYN coupled system Table of contents 1. Motivation 2. Formalism (3-body equation) 3. Results (KNN resonance state) 4. Summary Y. Ikeda and T.Sato (Osaka Univ.)
1. Our Motivation Kaon absorption?? (Magas et al.)
Λ(1405) K-pp system -> the resonance in the KN-πΣ coupled channel system P P S=-1, B=2, Q=+1 L=0 (s-wave interaction) Jπ=0- (3-body s-wave state) • It will be very important • to take into account the dynamics of KN-πΣ system • in order to investigate whether KNN resonance may exist. Solve K- -> Coupled channel Faddeev equation Find • We consider s-wave state. • We expect most strong attractive interaction • in this configure. -> KNN 3-body resonance Our Investigation • We investigate the possible • [KNN](I=1/2,J=0) 3-body resonance state.
2. Formalism 2-body Meson-Baryon Potential Chiral effective Lagrangian φ : Meson field , B : Baryon field
KN-πY(I=0, 1) πN(I=1/2,3/2) NN散乱 反対称化を考慮 The KNN-πΣN resonance KNN-πYN 共鳴状態を理解するための全体の目標 本研究での枠組み->KN interaction に注目 : 1-particle exchange term π N Σ : 2-body scattering term
Parameter fit Our parameter -> cut-off of dipole form factor fit : Martin’s analysis and Kaonic hydrogen data Relativistic Non relativistic I=0 (-1.70 + i0.68 fm) KN =946 MeV πΣ=988 MeV ------------------------ I=1 (0.72 + i0.59 fm) KN =920 MeV πΣ=960 MeV πΛ=640 MeV I=0 (-1.70 + i0.68 fm) KN =1095 MeV πΣ=1450 MeV ------------------------ I=1 (0.68 + i0.60 fm) KN =1100 MeV πΣ=850 MeV πΛ=1250 MeV
πN scattering (S11 and S31) -> Fit to the scattering length and phase shift. (S11) (S31) Rel. Rel. Non-rel. Non-rel. Phys. Lett. B 469 (1999) 25. NN potential -> 2-term Yamaguchi type Phys. Rev. 178 (1969) 1597.
AGS equation for 3-body amplitude Eigenvalue equation for Fredholm kernel Pole of 3-body amplitude Wp = -B –iΓ/2 Similar to πNN, ηNN, K-d analyses.(Matsuyama, Yazaki, ……) K, N,π KN-πY, NN, πN
2-body T-matrix in the 3-body system :spectator energy spectator energy 3. Numerical Results How this attractive KN interaction contributes to 3-body binding system is determined by solving dynamical 3-body eq. directly!! KN amplitude bellow threshold WKN (MeV)
The pole trajectories of three-body system a:KN only b:+NN c:+πYin τ d:π exchange
The three-body resonance poles (other parameters) Rel. model -1.70-i0.68 fm Martin -1.60-i0.68 fm -1.70-i0.59 fm -1.80-i0.68 fm -1.70-i0.78 fm
Summary • We solve 3-body equation directly. • We can find the resonance pole • in the KNN physical and πΣN unphysical energy plane. • (Wpole = -79.7-i36.4 MeV using relativistic kinematics) In the future • The pole position strongly depends on KN interaction. • -> Form factor (dipole -> monopole) • -> Structure dependence on Λ(1405) • Effects of kaon absorption (p-wave interaction)