130 likes | 268 Views
Combining CMB, SnIa and weak lensing to study quitessence models work in progress. Carlo Schimd IAP DAPNIA / CEA Saclay. I.Tereno, J.-P.Uzan, Y.Mellier, A.Riazuelo (IAP), L.vanWaerbeke (British Columbia Univ.). In collaboration with:.
E N D
Combining CMB, SnIa and weak lensing to study quitessence modelswork in progress Carlo Schimd IAP DAPNIA / CEA Saclay I.Tereno, J.-P.Uzan, Y.Mellier, A.Riazuelo (IAP), L.vanWaerbeke (British Columbia Univ.) In collaboration with: December 2005 EDENINPARIS
Aim:low-z effects of quintessence SNe + cosmic shear
Aim:low-z effects of quintessence SNe + cosmic shear 2pts statistics with respect to L , quintessence modify • angular distance q(z); 3D2D projection • growth factor amplitude of 3D L/NL power spectrum amplitude + shape of 2D spectra 20% 10% z=1 K = 0
non-linear regime • N-body: ... • mappings: stable clustering, halo model, etc.: e.g. Peacock & Dodds (1996) Smith et al. (2002) NLPm(k,z) = f[LPm(k,z)] calibrated with LCDM N-body sim, 5-10% agreement Huterer & Takada (2005) Ansatz: for every z we can use them, being dc, bias, c, etc. not so much dependent on cosmology Q: dependence of 3D NL power spectrum on w ? McDonald, Trac, Contaldi (2005) • normalization to high-z (CMB): the modes k enter in non-linear regime ( s(k)1 ) at different time 3D non-linear power spectrum is modified 2D shear power spectrum is modified by no more s8
pipeline Boltzmann code by A.Riazuelo background dynamics + linear perturbations in fCDM * * w-lensing code by C.S. • NNL mappings • 2pts statistics • tomography Riazuelo & Uzan (2002) C.S., Uzan & Riazuelo (2004) * SNe + cosmic shear data analysis * grid method • Q models: inverse power law with/without SUGRA corrections • (restricted) parameter space:{WQ, a, ns, zsource} • fixed parameters: flat universe, h=0.72,Wbh2 =0.024, treion=0.17 * They include larger framework: scalar-tensor theories of gravitation / extended quintessence models * CMB can be taken into account at no cost
dataset • CMB: TT anisotropy spectrum @ WMAP initial conditions/ normalization • SNe: “goldset” Riess et al. (2004) VanWaerbeke, Mellier, Hoekstra (2004) • cosmic shear: VIRMOS-Descart + CFHTLS deep Semboloni et al. (2005) + CFHTLS wide (sim) Hoekstra et al. (2005): 22deg2 Fu’s talk <z> 0.92, 1.0, 0.76 ngal 15, 23, 20 /arcmin2 area 8.5, 2.1, 170 deg2 wl observables: top-hat variance; aperture mass variance cosmic shear: by wide-field imager/DUNE-like satellite mission
deep survey : effects ofL-NL mapping VIRMOS-Descart + CFHTLS deep CFHTLS wide * * * ns ns ns top-hat variance WQ WQ WQ low resolution effect. High-res in progress ns ns ns * a a a halo model stable clustering Smith et al. (2002) Peacock & Dodds (1996) primordial universe (ns): because of high-z normalization, constraints strongly depend on L-NL mapping NL regime (integrated effect) wide angular scales are needed quintessence: no relevant differences due to L-NL mapping in deep surveys
wide survey : Q - geometrical effects q > 20 arcmin a * top-hat variance WQ WQ WQ q > 20 arcmin ns DE is more sensible to the geometrical factor WQ WQ WQ q > 20 arcmin low resolution effect ns ns ns * a a stable clustering halo model Peacock & Dodds (1996) Smith et al. (2002)
cosmic shear + SNe : Q equation of state CFHTLS wide SNe “goldset” Map2, Smith et al. a a WQ WQ • dynamical model of quintessence (scalar field): wQ = wQ(WQ, a) -- no parameterization e.g. à la Linder • comparison to parameterized models: translation (WQ, a) wQ(z*), dwQ/da(z*) [z_pivot technique]
dark energy by Fisher matrix analysis SNe “goldset” TT @ CMB WMAP 1yr CFHTLS wide: top-hat variance; L-NL: Smith et al. • A= 170 deg2 • ngal = 20/arcmin2 Remark: * = fiducial model DUNE-like: • A= 20000 deg2 • ngal = 35/arcmin2 Refregier’s talk
conclusions & prospects • quintessence at low-z by Sne + cosmic shear,using high-z informations (CMB/Cl normalization) • pipeline: Boltzmann code + lensing code + data analysis by grid method: dynamical models of DE (not parameterization): fCDM for the first time cosmic shear data to this task (Fu’s talk) improvement: bigger parameter space 1. combining also CMB data (high-z effects of DE); 2. MCMC analysis; 3. deviation from GR, e.g. EQ wQ < -1 Martin, C.S., Uzan. (2005) • NL regime: L-NL mappings (caveat) some parameters (nS) are sensible to L-NL mappings ( integrated effect ?), Q parameters feel only geometry wide field surveys are needed DUNE (Refregier’s talk) Work in progress: • analysis of realistic (=dynamical) models of DE using severalparameters other techniques: cross-correlations, tomography in collaboration with: I.Tereno, Y.Mellier , J.-P. Uzan, R. Lehoucq, A. Refregier & DUNE team
...DUNE : Fisher matrix analysis WMAP 1yr + • CFHTLS wide: • A= 170 deg2 • ngal = 20/arcmin2 • DUNE: • A= 20000 deg2 • ngal = 35/arcmin2 top-hat variance; L-NL: Smith et al