1 / 51

Recent Progress in CMB

Recent Progress in CMB. 郭宗宽. 北京工业大学 2014.4.17. 内容. 一、宇宙学发展现状 二、 CMB 物理 三、 CMB 的最新进展. 一、宇宙学发展现状. 大爆炸宇宙学 (1920s-1970s) 宇宙在膨胀( 1929 ) BBN 的预言与观测一致( 1998 ) CMB 的黑体谱( 1994 ) 标准 模型 (1980s-2000s) 暴胀 + Λ + 冷暗物质 + 重子 + 中微子 精确 宇宙学 (2000s-now) CMB , LSS(BAO, RSD, GC, WL), SNIa. 二、 CMB 物理.

vivek
Download Presentation

Recent Progress in CMB

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Recent Progress in CMB 郭宗宽 北京工业大学 2014.4.17

  2. 内容 一、宇宙学发展现状 二、CMB物理 三、CMB的最新进展

  3. 一、宇宙学发展现状 • 大爆炸宇宙学(1920s-1970s) • 宇宙在膨胀(1929) • BBN的预言与观测一致(1998) • CMB的黑体谱(1994) • 标准模型(1980s-2000s) • 暴胀+Λ+冷暗物质+重子+中微子 • 精确宇宙学(2000s-now) • CMB, LSS(BAO, RSD, GC, WL), SNIa

  4. 二、CMB物理 • CMB的形成 • CMB的发现和探测实验 • CMB的数据分析 • CMB各向异性的物理起源

  5. 1. CMB的形成 recombination: Compton scattering: decoupling during recombination 400 now

  6. 2. CMB的发现和探测实验 • The CMB was first predicted by G. Gamow, R. Alpherand R. Herman in 1948. (T~5 K) • the first discovery of the CMB radiation in 1964-1965. the Nobel Prize in Physics 1978: A.A. Penzias and R.W. Wilson • It is interpreted by R. Wilson, B. Burke, R. Dicke and J. Peebles in 1965. • COBE (Cosmic Background Explorer) — the first generation CMB experiment, launched on 18 Nov. 1989, 4 years. the Nobel Prize in Physics 2006: J.C. Mather and G.F. Smoot

  7. isotropy Hot big bang

  8. 23 GHz • WMAP (Wilkinson Microwave Anisotropy Probe)the second generation CMB experiment, launched on 30 June 2001, 9 years foreground mask 33 GHz 141° 41 GHz 61 GHz 94 GHz

  9. 14, 5, 8, 6, 2 papers, 6873 citations We have entered a new era of precision cosmology.

  10. Planck — the third generation CMB experiment, launched on 14 May 2009, 30 months, 5 full-sky surveys LFI: 30, 44, 70 GHz HFI : 100, 143, 217, 353, 545, 857 GHz • full-sky coverage • high sensitivity • wide frequency • high resolution ~ 5′(15′,7º)

  11. cosmological parameters Mar 2013, 29papers, 1609 citations CMBspectrum

  12. BICEP2 (Background Imaging of Cosmic Extragalactic Polarization) experiment — evidence for primordial B-mode is first detected. BICEP1 (2006-2008) BICEP2 (2010-2012) SPT The Dark Sector Lab (DSL)

  13. 26 cm aperture 150 GHz 383.7 deg2 2010-2012 4 tiles 8×8 array of detector pairs antenna networks band-defining filters bolometers

  14. scan strategy

  15. “BICEP2 2014 I: Detection of B-mode Polarization at Degree Angular Scales”, arXiv:1403.3985, cited by 153 records “BICEP2 2014 II: Experiment and Three-year Data Set”, arXiv:1403.4302

  16. nextgeneration space-based CMB experiment • NASA: CMBPol • ESA: COrE

  17. Other experiments • ground-based experiments • ACBAR, BICEP, CBI, VSA, QUaD, POLARBEAR, … • ACT, ACTPol from 2013 • SPT, SPTpol from 2012 • BICEP2 (r ~ 0.2) • QUBIC (r ~ 0.01, bolometer, interferometer) • balloon-borne experiments • BOOMRANG, MAXIMA, … • EBEX • Spider

  18. 3. CMB的数据分析 • CMB temperature fluctuations  time-ordered data  CMB temperature sky map ~10−5

  19.  for Gaussian random fluctuations, the statistical properties of the temperature field are determined by the angular power spectrum for a full sky, noiseless map  cosmological parameter estimation likelihood function for a full sky:

  20. CMB polarization  raw timestreams(2010~2012) Glitches and flux jumps are flagged.  map making (T, Q, U) detector transfer function, gain calibration, noise, beam function, polarization leakage, …

  21.  from maps to power spectra • rotationally invariant • B has the opposite parity of T and E • scalar modes contribute only to E

  22. 9 data bandpowers: ∆l=35, 20<l<340 model bandpowers by band window functions  cosmological parameter constraints • direct likelihood • bandpower likelihood

  23. 4. CMB各向异性的物理起源 • primary CMB anisotropies (at recombination) inflation model (A.H. Guth in 1981) • secondary CMB anisotropies (after recombination) thermal/kinetic Sunyaev-Zel’dovich effect integrated Sachs-Wolf effect reionization weak lensing effect

  24. slow-roll inflationary model V (φ) reheating inflation φ for slow-roll inflation, the primordial power spectra of scalar and tensor perturbations:

  25. reconstruction of power spectrum • parameterization: • scale-invariant(As) • power-law (As, ns) • running spectral index (As, ns, as) • method: • advantages: • It is easy to detect deviations from a scale-invariant or a power-law spectrum. • Negative values of the spectrum can be avoided by using ln P(k) instead of P(k). • It reduces to the scale-invariant or power-law spectrum as a special case when N bin= 1, 2, respectively.

  26. WMAP7+H0+BAO WMAP7+H0+BAO WMAP7+ACT+H0+BAO WMAP7+ACT+H0+BAO ZK Guo, D.J. Schwarz, YZ Zhang, JCAP 08 (2011) 031; ZK Guo, YZ Zhang, JCAP 11 (2011) 032; ZK Guo, YZ Zhang, PRD 85 (2012) 103519.

  27. CMB temperature fluctuations gravity pressure The stronger the contraction, the higher these peaks should be. Acoustic oscillations are frozen in at recombination.

  28. CMB polarization A monochromatic electromagnetic wave propagating in the z direction has an electric field vector

  29. scalar mode tensor mode with

  30. 三、CMB的最新进展 • 去年发布了Planck 2013温度数据 • 平静之下,暗潮汹涌。 • 上月发布了BICEP2极化数据 • 至于你信不信,我反正信了。 • 今年将发布Planck 2014极化数据 • 灭火器?

  31. 六参数的ΛCDM模型 • 暴胀模型的限制 • 数据之间的不自洽 • CMB温度涨落的反常 • BICEP2分析结果

  32. 1. 六参数的ΛCDM模型 “None of these models are favouredover the standard six-parameter ΛCDM cosmology.”

  33. Lorentz invariance violation in the neutrino sector the deformed dispersion relation • CMB anisotropies: (1) the energy density (2) the Boltzmann equation in the synchronous gauge

  34. Big Bang nucleosynthesis: (1) the energy density (2) the weak reaction rate • cosmological constraints: ZK Guo, QG Huang, RG Cai, YZ Zhang, PRD 86 (2012) 065004; ZK Guo, JW Hu, PRD 87 (2013) 123519.

  35. 2. 暴胀模型的限制 slow-roll inflation (three parameters): As, ns, r, nt=-r/8 The data favor a concave potential rather than a convex one.

  36. Inflation coupled to a GB term • motivations: higher-order corrections,a flat potential,a large tensor perturbation • model: where introducing Hubble and GB flow parameters: the predicted tensor-to-scalar ratio and spectral indices:

  37. The standard consistency relation is broken by the GB coupling. The GB coupling may lead to a reductionof the tensor-to-scalar ratio. ZK Guo, N. Ohta, S. Tsujikawa, PRD 75 (2007) 023520; ZK Guo, D.J. Schwarz, PRD 80 (2009) 063523; ZK Guo, D.J. Schwarz, PRD 81 (2010) 123520; PX Jiang, JW Hu, ZK Guo, PRD 88 (2013) 123508.

  38. 3. 数据之间的不自洽 • 平静之下,暗潮汹涌。 • Cepheid+SNeIa, discrepant at the 2.5 σ level • SNLS, discrepant at the 2σ level • cosmic shear, discrepant at the 2 σlevel, • galaxy cluster, discrepant at the 3 σlevel,

  39. 4. CMB温度涨落的反常 (1) the quadrupole-octopolealignment (2) power deficit at low-l (3) parity asymmetry (4) hemispherical asymmetry (5) the cold spot ……

  40. (1) the quadrupole-octopolealignment

  41. (2) power deficit at low-l

  42. (3) parity asymmetry

  43. (4) hemispherical asymmetry the CMB temperature sky maps is modeled as

  44. a super-horizon perturbation the Sachs-Wolfe effect the diploe modulation of curvature perturbation the asymmetry A is For a single-field slow-roll inflation,

  45. primordial power spectrum: For the bounce inflation, ZG Liu, ZK Guo, YS Piao, PRD 88 (2013) 063539; ZG Liu, ZK Guo, YS Piao, arXiv:1311.1599

  46. 5. BICEP2分析结果 Step 1: is the data reliable? • some unknown sources of systematic error • data analysis pipeline • likelihood method • “至于你信不信,我反正信了。”

  47. cosmic string • Faraday rotation • cosmic birefringence • reionization Step 2: primordial gravitational wave? Step 3: a tension with the Planck result • a large running of scalar spectral index • step potential • fast-slow-roll inflation • non-Bunch-Davis vacuum, false vacuum, trans-Planck • anti-correlated tensor-curvature • anti-correlated iso-curvature

  48. Step 4: what is the inflation field? • Higgs field? • for slow-roll inflation, • challenge for slow-roll inflation with a large running Step 5: if confirmed by Planck, the tensor spectral index • scale-invariant tensor spectrum • the standard consistency relation? • blue spectrum? string gas cosmology bounce inflation super-inflation before slow-roll inflation

  49. B Hu, JW Hu, ZK Guo, RG Cai, arXiv:1404.3690

More Related