340 likes | 542 Views
Thermodynamic Properties of the Shastry Sutherland Model. Janez Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA. Collaborators: S. El Shawish and I. Sega , J. Stefan Inst., Ljubljana, Slovenia
E N D
Thermodynamic Properties of the Shastry Sutherland Model Janez Bonča Physics Department, FMF, University of Ljubljana, J. Stefan Institute, Ljubljana, SLOVENIA
Collaborators: • S. El Shawish and I. Sega, J. Stefan Inst., Ljubljana, Slovenia • C. D. Batista, M. Jaime, N. Harrison, G.A. Jorge, LANL T-11, NHMFL, USA • R. Stern, NICPB, Tallin, Estonia • H.A. Dabkowska, B.D. Gaulin, Mc Master Univ., Hamilton, Canada
Introduction • Structure and symmetry properties of SrCu2(BO3)2 • The Sutherlad Shastry model • Finite Temperature Lanczos method • Specific heath results and comparison with experiment • Spin structure factor at zero and finite temperatures and comparison with ESR and INS measurements • Finite doping with nonmagnetic impurities
Space group of the CuBO3 plane: Point group: Including time-reversal at H=0: H>0:
Shastry-Sutherland model: Shastry & Sutherland Physica 108B (1981) 1069
Complete model: Ts<395K
Symmetry of DM term sx y 1 InversionSymmetry: sy x 2 MirrorSymmetry:
Computation: Allowed tilted square lattices:
FTLM: High -T expansion Thermal average over the canonical ensemble Combination of high- temperature expansion and random sampling J. Jaklič and P. Prelovšek, Adv. Phys. 49, 1 (2000). J. Jaklič and P. Prelovšek, Phys. Rev. Lett. 77, 892 (1996). J. Bonča and P. Prelovšek, Phys. Rev. B 67, 085103 (2002).
Thermodyamic properties: Entropy density: Specific heat: Uniform susceptibility:
Specific heat G.A.Jorge, R.Stern, M. Jaime, N. Harrison, J. Bonča, S. El Shawish, C.D Batista, H.A. Dabkowska, and B.D. Gaulin,PRB71, 092403, (2005).
Energy spectrum 3 4 2 1
ESR spectrum H. Nojiri, et al.,J. Phys. Soc. Jpn. 72, 3243 (2003).
Spin Structure Factor S. El Shwaish, J. Bonca, C.D.Batista, and I. Sega, PRB 71, 014413 (2005) Non-symmetry breaking D:
H. Nojiri, et al.,J. Phys. Soc. Jpn. 72, 3243 (2003). B||c B||a
Neutron Scattering Knetter, PRL 92, 027204 (2004)
Neutron Scattering S. El Shawish, J. Bonča, and I. Sega, PRB 72,184409 (2005). Comparison of FTLM with: Kageyama et al. PRL, 84 5876 (2000).
Neutron Scattering Comparison of FTLM with: B.D. Gaulin et al. PRL, 93 267202 (2004). S. El Shawish, J. Bonča, and I. Sega, PRB 72,184409 (2005).
Neutron Scattering FTLM results Comparison of FTLM with: B.D. Gaulin et al. PRL, 93 267202 (2004). Experiment T=1.4K
Neutron Scattering S. El Shawish, J. Bonča, and I. Sega, PRB 72,184409 (2005). Comparison of FTLM with: B.D. Gaulin et al. PRL, 93 267202 (2004).
Finite Doping Sr Cu2-xMx(BO3)2, M=Zn,Mg J’/J=0.62 N=32, Nh=1 Leung & Cheng,PRB 69, 180403, (2005)
Uniform susceptibility co K.Kudo et al. cond-mat/0409178
Conclusions • FT simulations of Cv show good agreement with experimental data when symmetry breaking DM term is of the order of Dz~5K. G.A.Jorge, R.Stern, M. Jaime, N. Harrison, J. Bonča, S. El Shawish, C.D Batista, H.A. Dabkowska, and B.D. Gaulin,PRB71, 092403, (2005). • ESR spectra can be reproduced only with finite value of symmetry breaking Dz – open question (structural phase transition, phonons). S. El Shwaish, J. Bonca, C.D.Batista, and I. Sega, PRB 71, 014413 (2005). • Good agreement with neutron-scattering data. S. El Shawish, J. Bonča, and I. Sega, PRB 72,184409 (2005). • Results a finite doping show filling up of the spin gap.