270 likes | 378 Views
Using - and -K atoms for the experimental check of low-energy QCD L. Nemenov (CERN, Switzerland). Presented by L. Tauscher Basel University, Switzerland. Why atoms ?. Particles scatter off each other in well defined atomic quantum states
E N D
Using - and -K atoms for the experimental check of low-energy QCD L. Nemenov (CERN, Switzerland) Presented by L. Tauscher Basel University, Switzerland L. Nemenov, EXA05
Why atoms ? • Particles scatter off each other in well defined atomic quantum states • Very low Q’s atomic level scheme sensitive to scattering length Strong interaction leads to complex energy eigenvalues Enl - iGnl/2 = EnlQED + enl - iGnl/2 Example: pp e1S 2a0 + a2G1S |a0 - a2|2 “Model-independent” determination of scattering lengths L. Nemenov, EXA05
Experimental status on pp K++-e+ve (Ke4) phase difference d00(s)-d11(s) for 4mp2<s<mK2 a0 = 0.26 ± 0.05[mp-1] Roy eq. Rosselet et al. CERN 1977 a0 = 0.203 ± 0.033[mp-1] Roy eq. Pislak et al. BNL / E865 a2 = -0.055 ± 0.023[mp-1] 2001/2003 a0 = 0.216 ± 0.013stat ± 0.004syst ± 0.002th [mp-1] Roy eq a2 = from ChPT DIRAC (A2p) after analysis of ALL collected data so far s|a0-a2| ± 5%stat(± 3%syst ± 2%th)estimated ± 0.013stat(± 0.008syst ± 0.005th)estimated L. Nemenov, EXA05
Theory pp a0 = 0.220 ± 0.005 [mp-1] (2.3%) a2 = -0.0444 ± 0.0010[mp-1] (2.3%) a0- a2 = 0.265 ± 0.004 [mp-1] (1.5%) L. Nemenov, EXA05
Theory pK L. Nemenov, EXA05
Experimental status on pK In the 60’s and 70’s set of experiments were performed to measure πK scattering amplitudes.Most of them were done studying the scattering of kaons on protons or neutrons, and later also on deuterons. The kaon beams used in theseexperiments had energies ranging from2 to 13 GeV. The main idea of those experiments was to determine the contribution of the One PionExchange (OPE) mechanism. This allows to obtain the πK scattering amplitude. Analysis of experiments gave the phases of πK-scatteringin the region of 0.7≤m(πK) ≤ 2.5 GeV. The most reliable data on thephases belong to the region 1 ≤m(πK) ≤ 2.5 GeV. L. Nemenov, EXA05
Theoretical accuracy on atomic quantities L. Nemenov, EXA05
Theoretical accuracy on atomic quantities L. Nemenov, EXA05
Principle of lifetime measurement L. Nemenov, EXA05
Pbr to lifetime conversion L. Nemenov, EXA05
DIRAC II (Addendum) L. Nemenov, EXA05
DIRAC II Set-up L. Nemenov, EXA05
DIRAC II Set-up • Decrease the systematic errors. • Single–multilayer targets • Identification of e±, ±, K ± and p • Increasing of statistics and efficiency of the setup • Shielding K ≈ 1.9 • Formation of time structure of the spillwith the trigger of setup • Microdriftchambers • New electronics for SFD • Increase in the aperture on VH hodoscopeand PSH • Total K ≈ 4 L. Nemenov, EXA05
Metastables L. Nemenov, EXA05
Metastables L. Nemenov, EXA05
Metastables L. Nemenov, EXA05
Metastables L. Nemenov, EXA05
Metastables L. Nemenov, EXA05
Metastables L. Nemenov, EXA05
Metastables L. Nemenov, EXA05
Metastables L. Nemenov, EXA05
Metastables L. Nemenov, EXA05
Prospects beyond DIRAC II • Measure at machines with • higher proton current • Higher duty factor • Higher energy L. Nemenov, EXA05
Yields of atoms as a function of the proton beam momentum L. Nemenov, EXA05
*) Precision of Pbr=f(t) can be increased to better then 0.6% private communication by D.Trautmann L. Nemenov, EXA05
*) Precision of Pbr=f(t) can be increased to better then 0.6% private communication by D.Trautmann L. Nemenov, EXA05
Conclusions L. Nemenov, EXA05