1 / 45

Extratropical Storm-Induced Coastal Inundation: Scituate, MA

Extratropical Storm-Induced Coastal Inundation: Scituate, MA . Robert C. Beardsley 1 , Changsheng Chen 2 , Qichun Xu 2 , Jianhua Qi 2 , Huichan Lin 2. 1 Department of Physical Oceanography Woods Hole Oceanographic Institution Woods Hole, MA 02543. 2 School for Marine Science and Technology

nasnan
Download Presentation

Extratropical Storm-Induced Coastal Inundation: Scituate, MA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Extratropical Storm-Induced Coastal Inundation: Scituate, MA Robert C. Beardsley1, Changsheng Chen2, Qichun Xu2, Jianhua Qi2, Huichan Lin2 1Department of Physical Oceanography Woods Hole Oceanographic Institution Woods Hole, MA 02543 2School for Marine Science and Technology University of Massachusetts-Dartmouth New Bedford, MA 02744 E-mail: rbeardsley@whoi.edu; c1chen@umassd.edu; qxu@umassd.edu; jqi@umassd.edu; hlin@umassd.edu

  2. Overall Goal Investigate roles of model structure and physics, waves, wave-surge interaction, grid resolution, computational effort on hindcasting inundation on a local scale driven by an extratropical storm in the Gulf of Maine. Objectives • Hindcast inundation at Scituate (MA) during two recent (2005 and 2007) Nor’easters using suite of models with the same grid and forcing; • Compare model output with available field data; • Inter-compare model output; • Formulate initial comparison results and plans for additional model tests.

  3. The Test Site: Scituate, MA 44013

  4. A 3-D View of the bathymetry of the Scituate

  5. Initial Test Storm Cases May 24 2005 storm; April 17, 2007 (“Patriot’s Day”) storm; Model validation for tides: May 1-June 1, 2010 Boston tide gauge and NOAA 440013 Nor’easter

  6. The Northeast Coastal Ocean Forecast System (NECOFS) grid The Scituate Grid Nested Horizontal Resolution: 10 m to 1 km Cell number: 11153 Node number: 5620

  7. Tide gauge station

  8. Buoys with wave measurements Total 20 stations Station No. Longitude(W) Latitude (N) 44004 70.433 38.484 44005 69.140 43.189 44007 70.144 43.531 44008 69.431 40.500 44009 74.702 38.464 44013 70.691 42.354 44017 72.046 40.691 44018 69.294 41.259 44024 65.927 42.312 44025 73.166 40.250 44027 67.314 44.273 44029 70.570 42.520 44030 70.418 43.183 44031 70.060 43.570 44032 69.358 43.715 44033 69.000 44.060 44034 68.110 44.110 44035 67.020 44.890 44037 67.883 43.484 44038 66.550 43.633

  9. Model-Model Comparisons • Transects • Elevation • Mass Flux • Wave Energy Flux (?) • Points • Tide gauge • E. Foster Bridge • Harbor Master/Town Pier • Cedar Point depression • Jericho Road • Center of harbor mouth transect Model-Data Comparison 44 Rebecca Road

  10. Points and sections in the grid Sites and sections in the model grid STATIONS NODE NUMBER LONGITUDE LATITUDE A 3078 -70.7233658 42.2058182 B 5301 -70.7239990 42.2021598 C 5446 -70.7248611 42.1981239 D 4216 -70.7214050 42.1923218 E 2543 -70.7172089 42.1955299 F 5140 -70.7198868 42.1993752 G 3484 -70.7163010 42.2028236 H 2792 -70.7182312 42.2070961 I 1898 -70.7178879 42.2078705 A1 I H A A2 B2 B G SECTIONS FROM NODE NUMBER LONGITUDE LATITUDE TO NODE NUMBER LONGITUDE LATITUDE Section A -70.7221832 42.2072754 4133 -70.7191620 42.2062111 Section B -70.7163162 42.2017404 -70.7152786 42.2042465 Section C 3401 -70.7259140 42.1923523 3576 -70.7204742 42.1923676 B1 F C E C1 D C2

  11. The Model Forcing and Boundaries for 2005 and 2007 The grid, forcing, boundary conditions, and initial conditions are uploaded at 2005 storm: /data/ftp/upload/Inundation/umass/fvcom_extratropical/2005_fine_grid1/wave_current/input/ 2007 storm: /data/ftp/upload/Inundation/umass/fvcom_extratropical/2007_fine_grid1/wave_current/input/ Grid: sci_cor.dat --------The latitude at each node: used for Coriolis term sci_dep.dat ------- The water depth at each node sci_grd.dat --------The model mesh sci_obc.dat -------- Node numbers and types at the nesting boundary sci_sigma11.dat --------Vertical coordinate levels and type sci_spg.dat --------Sponge layer setup at the boundary (not need here) sci_restart_wd.dat --------Restart file with types of nodes and cells for the wet and dry

  12. Input files for 2005 and 2007 Forcings: Wind forcing (9×9 km WRF hindcast field-the wind velocity at the 10-m height ) Heat flux and precipitation via evaporation (9×9 km WRF hindcast field) The sea level at the nodes of the nesting boundary (5 tidal constituents: M2, N2, S2, K1 and O1 and subtidal sea level) Velocity at the centers of cells 2005 node_nest.nc ---------------------------------------Open boundary nesting file restart20050501.nc ------------------------------- Restart file for May 01 2005 model run wrf_for.nc or gom_mm5_forcing_20050501-20050601.nc --- Winds, heat flux and P-E 2007 node_nest.nc ------------------------------------ Open boundary nesting file restart20070401.nc ---------------------------- Restart file for April 01 2007 model run wrf_for.nc ----------------------------------------- Winds, Heat Flux and P-E

  13. The FVCOM Validation for Tidal Simulation Tide   Freq       Amp (m)     Amp error (m)    Phase (oG)    Phase error (oG)  M2   0.0805114    1.2729    0.021   339.21     0.97  N2   0.0789992    0.2858    0.022    43.60     4.79    S2 0.0833333    0.1669    0.018   154.03     8.13       K1   0.0417807    0.1254    0.004   183.54     2.02  O1   0.0387307    0.0988    0.004    76.93     2.46 

  14. The 2005 Nor’easter Storm May 25, 05 AM (GMT) Currents-Waves Currents

  15. Site H Winds Sea Level Vertically averaged velocity

  16. Site A (western coast) Winds Sea Level Vertically averaged velocity

  17. Site B (western coast) Winds Sea Level Vertically averaged velocity

  18. Site C (southwestern coast) Winds Sea Level Vertically averaged velocity

  19. Site D (southern are near the bridge) Winds Sea Level Vertically averaged velocity

  20. Site F (eastern coast) Winds Sea Level Vertically averaged velocity

  21. Site G (entrance) Winds Sea Level Vertically averaged velocity

  22. The water transports on Sections A, B and C

  23. Play the Google’s based animation for the 2005 storm

  24. 2007 Nor’easter Storm Currents April 18 , 04 AM (GMT) Currents-Waves

  25. Site H (flooded area) Winds Sea Level Vertically averaged velocity

  26. Site A (eastern coast) Winds Sea Level Vertically averaged velocity

  27. Site B (eastern coast) Winds Sea Level Vertically averaged velocity

  28. Site C (southeastern coast) Winds Sea Level Vertically averaged velocity

  29. Site D (southern area closed to bridge) Winds Sea Level Vertically averaged velocity

  30. Site F (eastern coast) Winds Sea Level Vertically averaged velocity

  31. Site G (entrance) Winds Sea Level Vertically averaged velocity

  32. The water transports on Sections A, B and C

  33. Play the Google’s based animation for the 2007 storm

  34. Preliminary Results for the December 27 2010 Storm 7 EST Dec. 26 7 EST Dec. 27 7 EST Dec. 28

  35. (M2, N2, S2, K1, and O1)

  36. 9 Tidal Constituents (two year records) Tide   Freq        Amp (m)    Amp error (m)  Phase (oG)  Phase error (oG) M2    0.0805114    1.2702    0.021   340.03     0.90 N2    0.0789992    0.3009    0.021   308.67      4.28 S2    0.0833333    0.1982    0.022    12.31     5.54 H1    0.0803973    0.1840    0.020    56.99     6.70 H2    0.0806255    0.1780    0.021   248.07     6.78 K1     0.0417807    0.1389     0.004   137.64     1.59 O1    0.0387307    0.1129    0.004   124.89     2.21 P1    0.0415526    0.0424    0.005   132.99     5.83 M4    0.1610228    0.0160    0.002   108.91     5.74

  37. 2010 December 27 08 GMT

  38. Play the Google’s based animation for the 2010 storm

  39. Questions raised from the 2010 Nor’easter storm simulation : How could we improve the tidal simulation for the long-term variation of the sea level? How could we count the effects of the snow? Should we increase the time interval of the wind forcing from one hour to a shorter period?

  40. The Surface Wave Validations for 2005, 2007 and 2010 Storms

  41. Buoy 44013 2005 2007

  42. Buoy 44029 2005 2007

  43. 2010 December Wave Forecast Buoy 44005 Buoy 44018

  44. Buoy 44013

More Related