1 / 31

Robust Designs for WDM Routing and Provisioning

Robust Designs for WDM Routing and Provisioning. Jeff Kennington & Eli Olinick Southern Methodist University. Augustyn Ortynski & Gheorghe Spiride Nortel Networks. 1. LTE. TE. LTE. LTE. TE. LTE. LTE. TE. LTE. LTE. LTE. TE. …. …. …. …. …. …. TE. LTE. LTE. TE. LTE. LTE.

Download Presentation

Robust Designs for WDM Routing and Provisioning

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Robust Designs for WDM Routing and Provisioning Jeff Kennington & Eli Olinick Southern Methodist University Augustyn Ortynski & Gheorghe Spiride Nortel Networks 1

  2. LTE TE LTE LTE TE LTE LTE TE LTE LTE LTE TE … … … … … … TE LTE LTE TE LTE LTE LTE TE LTE TE LTE TE LTE TE … … … … LTE LTE TE LTE TE LTE LTE LTE … … LTE LTE Regenerator Optical Amplifier Basic Building Block for the WDM Network 2

  3. UnderprovisionedCase Dallas Atlanta Unmet demand Satisfied demand Excess capacity Perfect MatchCase LA Phoenix OverprovisionedCase Boston NYC 3

  4. Regret UnderprovisionedCase OverprovisionedCase Underprovisioning Overprovisioning Perfect MatchCase 4

  5. Example 2 Boston Chicago San Francisco 3 6 7 New York Los Angeles 5 1 4 Atlanta Dallas 5

  6. Distance Matrix (KM) 6

  7. Scenario #1 Demand Matrix (DS3s) 7

  8. Scenario #2 Demand Matrix (DS3s) 8

  9. Scenario #3 Demand Matrix (DS3s) 9

  10. Scenario 1 Scenario 2 Scenario 3 Robust Solution Figure 5. Solutions 10

  11. Basic design model Minimize cx (equip. cost) Subject to Ax = b (structural const) Bx = r (demand const) 0<x<u (bounds) xj integer for some j (integrality) Integer Linear Program

  12. Decision Variables Scenario s Model Robust Model Variable Description Variables Variables Type s x continuous number of DS3s assigned to path p x p p s continuous number of TEs assigned to node n ? ? n n s t contin uous number of TEs assigned to link e t e e s a continuous number of optical amplifiers assigned to link e a e e s r continuous number of regens assigned to link e r e e s f integer number of fibers assigned to link e f e e s c integer number of channels assigned to link e c e e s z continuous number of DS3s assigned to link e z e e positive infeasibility for demand (o,d) and + continuous - z ods scenario s negative infeasibility for demand (o,d) and - continuous - z ods scenario s

  13. Constants Constant Value or Range Description s R 300 - 1500 traffic demand for pair (o,d) in scenario s in units of DS3s od TE 192 number of DS3s that each TE can accommodate M R 192 number of DS3s that each regen can accommodate M A 15,360 number of DS3s that each optical amplifier can accommodate M TE 50,000 unit cost for an TE C R 80,000 unit cost for a regen C A 500,000 unit cost for an optical amplifier C F 24 max number of fibers available on link e e max distance th at a signal can traverse without amplification, also R 80km called the reach max number of amplified spans above which signal regeneration is Q 5 required B 2 - 1106 the length of link e e

  14. Routing for scenario s

  15. Robust model

  16. Robust model (cont.)

  17. Mean-Value model

  18. Stochastic Programming Model

  19. Worst Case Model

  20. Source Total Nodes 67 Total Links 107 Total Demand Pairs 200 Number of Paths/Demand 4 Total Demand Scenarios 5 Source Total Nodes 18 Total Links 35 Total Demand Pairs 100 Number of Paths/Demand 4 Total Demand Scenarios 5 Test problems overview • Regional US network – DA problem • European multinational network – KL problem

  21. 60 29 37 24 4 1 50 14 3 65 48 40 18 17 5 53 51 49 66 25 69 68 28 22 56 63 26 43 16 11 21 10 9 7 20 6 55 44 58 12 54 59 35 41 42 45 33 8 47 62 46 30 64 36 67 52 32 39 38 61 13 57 31 2 19 34 27 23 DA Test Problem 16

  22. 10 Legend 1 Brussels 2 Copenhagen 3 Paris 4 Berlin 5 Athens 6 Dublin 7 Rome 8 Luxembourg 9 Amsterdam 10 Oslo 11 Lisbon 12 Madrid 13 Stockholm 14 Zurich 15 London 16 Zagreb 17 Prague 18 Vienna 13 2 6 4 9 15 1 8 3 17 14 18 16 7 11 12 European Problem 5 17

  23. Scenario Prob. TEs Rs As CPU Seconds Equipment Cost 1 0.15 24,996 3962 563 0.5 1,848,000,000 2 0.20 39,456 6502 864 0.5 2,925,000,000 3 0.30 51,882 8074 1101 0.5 3,791,000,000 4 0.20 65,086 10,122 1355 0.6 4,742,000,000 5 0.15 76,848 12,447 1584 0.5 5,630,000,000 Expected — 51,749 8,208 1096 — 3,792,000,000 Value DA – method comparison

  24. Equipment CPU Unrouted Scaled Budget Method TEs Rs As Cost Seconds Demand Regret Mean Value 51,800 8117 1081 3,780,000,000 0.7 15.5% 1.40 Stoch. Prog. 44,373 7446 918 3,273,000,00 0 1.8 20.4% 1.82 5,630,000,000 Worst Case 39,098 5495 757 2,773,000,000 4.6 27.2% 3.75 Robust Opt. 63,122 10,813 1425 4,734,000,000 2.7 5.2% 1.00 Mean Value 51,800 8117 1081 3,780,000,000 0.2 15.5% 1.11 Stoch. Prog. 44,373 7446 918 DA – results 3,273,000,000 0.6 20.4% 1.44 3,787,000,000 Worst Case 39,098 5495 757 2,773,000,000 2.1 27.2% 2.95 Robust Opt. 52,159 8108 1061 3,787,000,000 4.5 12.6% 1.00 No Feasible Mean Value — — — 0.3 100% — Solution Stoch. Prog. 25,583 3696 515 1,832,000,000 3.9 42.3% 1.15 1 ,848,000,000 Worst Case 27,180 2960 505 1,848,000,000 6.6 42.3% 1.51 Robust Opt. 25,856 3575 539 1,848,000,000 5.6 43.3% 1.00

  25. KL – individual scenarios Scenario Prob. TEs Rs As CPU Seconds Equipment Cost 1 0.15 12,767 7275 638 0.3 1,539,356,770 2 0.20 17,493 11,691 958 0.3 2,288,919,583 3 0.30 24,020 15,783 1178 0.3 3,052,619,167 4 0.20 29,295 19,196 1455 0.2 3,727,940,417 5 0.15 35,732 23,606 1760 0.3 4,554,614,375 Expected — 23,837 15,545 1196 — 3,033,250,000 Value

  26. CPU Unrouted Scaled Budget Method TEs Rs As Equip. Cost Seconds Demand Regret Mean Value 25,124 15,350 1221 3,094,700,000 1.1 15.4% 1.41 Stoch. Prog. 20,264 14,168 996 2,644,620,000 0.6 20.8% 1.94 4,554,610 ,000 Worst Case 17,977 11,812 872 2,279,830,000 1.1 27.8% 4.05 Robust Opt. 27,520 21,348 1614 3,890,840,000 1.0 5.6% 1.00 Mean Value 23,978 15,382 1198 3,028,460,000 0.5 15.4% 1.11 Stoch. Prog. KL – method comparison 20,264 14,168 996 2,644,620,000 0.2 20.8% 1.52 3,032,69 0,000 Worst Case 17,977 11,812 872 2,279,830,000 0.4 27.9% 3.20 Robust Opt. 23,967 15,548 1181 3,032,690,000 200.0 13.1% 1.00 No Feasible Mean Value — — — ? 100% — Solution Stoch. Prog. 12,154 7456 666 1,537,150,000 2.7 42.7% 1.19 1,539,360,000 Wors t Case 12,782 7222 645 1,539,360,000 1.9 44.4% 1.71 Robust Opt. 13,562 7172 575 1,539,360,000 5.6 43.3% 1.00

  27. Network Protection • Dedicated Protection – 1 + 1 Protection • P-Cycle Protection – Grover Stamatelakis(restoration speed of bi-directional rings at the cost of shared protection) • Shared Protection – Path Restoration 25

  28. Shared Dedicated No Protection P-Cycle 3 3 3 3 2 2 2 2 6 6 6 6 4 4 4 4 5 5 5 5 1 1 1 1 TE = 2 A = 11 R = 5 Cost = 6.00 TE = 8 A = 32 R = 20 Cost = 18.00 TE = 6 A = 32 R = 15 Cost = 17.50 TE = 6 A = 32 R = 15 Cost = 17.5 Example 1 Demand: (1,4) of 192 DS3s (1 ) 2            26

  29. Shared Dedicated No Protection P-Cycle 3 3 3 3 2 2 2 2 6 6 6 6 4 4 4 4 5 5 5 5 1 1 1 1 TE = 18 A = 32 R = 45 Cost = 20.50 TE = 16 A = 32 R = 39 Cost = 19.92 TE = 18 A = 32 R = 43 Cost = 20.34 TE = 6 A = 20 R = 13 Cost = 11.34 Example 2 Demands: (1,4) 192 DS3s (1 ), (1,3) 384 DS3s ( 2 ) 2 2   2  2 2  2 2 2 2    2 2 2 27

  30. Shared No Protection Dedicated P-Cycle 3 3 3 3 2 2 2 2 6 6 6 6 4 4 4 4 5 5 5 5 1 1 1 1 TE = 70 A = 47 R = 181 Cost = 66.48 TE = 34 A = 45 R = 91 Cost = 31.48 TE = 70 A = 88 R = 185 Cost = 62.30 TE = 72 A = 88 R = 194 Cost = 63.12 Example 3Demands: (1,4) of 1 , (1,3) of 2 , (2,5) of 4  4 4 2 4 2 2 4  2 4 2  2 4  4 2 4  4 4 2  2 2 4 6  2 2  4 2 2  6  2   2 4 28

  31. 29

More Related