440 likes | 459 Views
A Theory of Multiplexed Illumination. Technion, Israel. Yoav Y. Schechner. Shree Nayar, Peter Belhumeur. Columbia University. ICCV Conference October 2003, Nice, France. Acknowledgments: Taub Foundation, BSF, NSF, Harish Peri. Georghiades, Belhumeur & Kriegman
E N D
A Theory of Multiplexed Illumination Technion, Israel Yoav Y. Schechner Shree Nayar, Peter Belhumeur Columbia University ICCV Conference October 2003, Nice, France Acknowledgments: Taub Foundation, BSF, NSF, Harish Peri
Georghiades, Belhumeur & Kriegman Yale Face Database B Shape Recovery BRDF Material Recognition Human Vision Rendering Object/Face Recognition
Synthesized illumination Raw images: individual sources Image-Based Rendering based on Schechner et. al. Multiplexed Illumination
High quality New capabilities Very simple, yet flexible setup Our Method Schechner, Nayar, Belhumeur Multiplexed Illumination
Image-Based Rendering / Recognition + + Schechner et. al. Multiplexed Illumination
Low res. High res. Illumination Direction Resolution Schechner et. al. Multiplexed Illumination
Illumination direction resolution vs. Image intensity Trade-Off Schechner et. al. Multiplexed Illumination
Image intensity Illumination direction resolution vs. signal = SNR 1 N elements ~ noise N ~ 1 N N independent images Exposure time ~ N Trade-Off Schechner, Nayar, Belhumeur Multiplexed Illumination
Image intensity Illumination direction resolution vs. signal = SNR 1 N elements ~ noise N ~ 1 N N independent images Exposure time ~ N Schechner, Nayar, Belhumeur Multiplexed Illumination
Multiplexed Illumination Standard Illumination
Multiplexed Illumination 2 2 2 3 3 3 1 1 1 i a1 1 0 1 1 i 2 a0 1 1 = i 2 3 1 2 3 Estimating i 1 i1 -1 1 a 1 2 i = 1 1 -1 a 2 i-1 1 1a 3 a1 0 1 3 i = intensity under sourcek a = acquired measurement k
Standard Illumination i = intensity under source k i = estimate ofi a = acquired measurement 2 2 2 k 3 3 3 1 1 1 a1 0 0 i 1 1 1 a = 0 1 0 i + s - 2 2 2 a0 0 1 i 3 3 3 i1 0 0 a 1 +s i = 0 1 0 a 2 i0 0 1a 3
Multiplexed Illumination i = intensity under source k i = estimate ofi a = acquired measurement 2 2 2 k 3 3 3 1 1 1 a1 1 0 i +s 1 1 1 a = 0 1 1 i 2 2 2 a1 0 1 i 3 3 3 +s 3 1 i1 -1 1 a 1 2 4 i = 1 1 -1 a 2 i-1 1 1a 3
Demultiplexed Images Multiplexed Illumination
Theory of Multiplexed Illumination +s -1 W W t -1 2 W Trace[] s i = a Variance( ) = N i Minimize i = intensities under individual sources a = acquired measurements For each pixel W a = i
Optimal Multiplexing Codes Based on Hadamard Codes Spectroscopy, X-ray astronomy: Harwit & Sloane 1979 Minimize -1 W W t Trace[] Schechner, Nayar, Belhumeur Multiplexed Illumination
Optimal Multiplexing Codes Based on Hadamard Codes Spectroscopy, X-ray astronomy: Harwit & Sloane 1979 Solution W source On/Off w =1 or 0 1 1 1 0 1 0 0 m,s 1 1 0 1 0 0 1 1 0 1 0 0 1 1 1’s N-1 N+1 0 1 0 0 1 1 1 2 2 1 0 0 1 1 1 0 ~ half the sources are On 0 0 1 1 1 0 1 0’s 0 1 1 1 0 1 0 Schechner, Nayar, Belhumeur Multiplexed Illumination
SNR multiplex 1 1 1 -1 1 -1 -1 = SNR 1 1 -1 1 -1 -1 1 -1 single W = 1 -1 1 -1 -1 1 1 1 -1 1 -1 -1 1 1 1 4 1 -1 -1 1 1 1 -1 -1 -1 1 1 1 -1 1 -1 1 1 1 -1 1 -1 ~ +1/ ~ N N N 2 2 Easy to Invert Schechner, Nayar, Belhumeur Multiplexed Illumination
standard demultiplexed = 2 N Fixed acquisition time T SNR SNR multiplex single Schechner, Nayar, Belhumeur Multiplexed Illumination
standard demultiplexed 2 = 2 N N Fixed acquisition time T SNR SNR multiplex single Fixed high quality SNR multiplex demultiplexed standard T T = multiplex single standard Schechner, Nayar, Belhumeur Multiplexed Illumination
standard demultiplexed 2 = 2 N N standard N N 0.6 = N 3 multiplex single single Fixed acquisition time T SNR SNR multiplex single Fixed high quality SNR multiplex demultiplexed standard T T = multiplex single Fixed acquisition time T single demultiplexed Fixed high quality SNR multiplex
Setup Scalable, Simple, Flexible projector Schechner, Nayar, Belhumeur Multiplexed Illumination
Illumination Patterns Multiplexed Illumination Single-Source Illumination Schechner, Nayar, Belhumeur Multiplexed Illumination
Setup Schechner, Nayar, Belhumeur Multiplexed Illumination
Anistropic illumination -4 -1 -2 -3 -4 -5 -4 2 2 2 2 2 2 2 1 Schechner, Nayar, Belhumeur Multiplexed Illumination
Adaptive directional resolution Schechner, Nayar, Belhumeur Multiplexed Illumination
bright dark dark bright dark dark bright bright bright bright bright dark dark The Quadtree algorithm Schechner, Nayar, Belhumeur Multiplexed Illumination
bright bright bright bright bright bright bright The Quadtree algorithm Schechner, Nayar, Belhumeur Multiplexed Illumination
Raw Images (Diffuse Objects) Multiplexed images Single-source images Schechner, Nayar, Belhumeur Multiplexed Illumination
Single-Source Images Schechner, Nayar, Belhumeur Multiplexed Illumination
Demultiplexed (Decoded) Images Schechner, Nayar, Belhumeur Multiplexed Illumination
Specular Objects Schechner, Nayar, Belhumeur Multiplexed Illumination
Specular Objects Schechner, Nayar, Belhumeur Multiplexed Illumination
Quantitative verification Single-source Demultiplexed +1/ N N 2 Average ratio = 7.97 = Expected ratio = 8.02 noise std [gray-levels] measurement samples
High Definition Specularities Image-Based Rendering Raw Images Schechner, Nayar, Belhumeur Multiplexed Illumination
blue green red intensity intensity l l l l cyan magenta yellow l l Color Schechner, Nayar, Belhumeur Multiplexed Illumination
Saturation Saturation Limit Benefit Highlights Diffuse Object Schechner, Nayar, Belhumeur Multiplexed Illumination
Detector (pixel) Light energy E light Electric energy = E elect 50% efficiency E light 2 Camera Noise Model - Revisited Schechner, Nayar, Belhumeur Multiplexed Illumination
e nothing { or Photon (shot) Noise Detector (pixel) Electrons Photon either 50% quantum efficiency Schechner, Nayar, Belhumeur Multiplexed Illumination
{ Photons e e e nothing Photon (shot) Noise Electrons either 50% quantum efficiency Schechner, Nayar, Belhumeur Multiplexed Illumination
2 s 1.5 1 readout noise variance shot noise variance 0.5 0 50 100 150 200 250 I Camera Noise Model - Revisited * Point-Grey Dragonfly, Gain 3.5 dB, 30fps Schechner, Nayar, Belhumeur Multiplexed Illumination
SNR Gain= 8.02 N=255 9 8 Dalsa 1M75 SNR Gain 4 Pixelink Redlake MotionPro PtGrey Dragonfly 2 PCO Sensican 1 0 saturation limit 20% 40% 60% 80% Schechner, Nayar, Belhumeur Multiplexed Illumination
Conclusions Multiplexing: Higher quality Very simple, yet flexible setup Yoav Schechner Shree Nayar Peter Belhumeur