260 likes | 470 Views
Gauss lov. Elektromagnetiske bølger James Clerk Maxwell (1831-1879). James Clerk Maxwells oppdagelse av lovene for elektrodynamikken er en av de viktigste hendelsene i det nittende århundre. Gjennom sine fire såkalte Maxwellske ligninger la han grunnlaget for det moderne samfunnet.
E N D
Elektromagnetiske bølgerJames Clerk Maxwell (1831-1879) James Clerk Maxwells oppdagelse av lovene for elektrodynamikken er en av de viktigste hendelsene i det nittende århundre. Gjennom sine fire såkalte Maxwellske ligninger la han grunnlaget for det moderne samfunnet. Fra disse ligningene kunne man forstå lys som elektromagnetiske bølger, utforme elektromagnetisk kommunikasjon og legge grunnlaget for klassisk elektroteknikk, dvs legge grunnlaget for det moderne samfunnet.
Elektromagnetiske bølgerMaxwells ligninger Integral form Differential form Gauss’s lov for E Gauss’s lov for B Faraday’s lov Ampere’s lov
Vannføring - FluksSkalarprodukt av hastighetsvektor og arealvektor
FluksEksempler Magnetisk fluks Væskestrøm Blodstrøm Elektrisk fluks Gravistasjonfelt rundt jorden
Blodstrøm - FluksSkalarprodukt av hastighetsvektor og arealvektor Hans-Jørgen Smith Radiologisk avdeling, Rikshospitalet
FluksEks: Vannmengde som passerer en linje / kurve C v Vannhastighet Vanntetthet (masse pr areal) s v Vektorfelt: l = vt Vannmengde som pr tidsenhet passerer over en strekning s av linjestykket C: v C s n l = vt v C n ds Fluks: Vannmengde som pr tidsenhet passerer en kurve C
FluksSkalarprodukt av feltvektor og arealvektor Flukstettheten representeres vha feltvektor Flateretningen representeres vha normalvektor Arealet representeres vha arealvektor
Elektrisk fluksDef E A E
Elektrisk fluksEks 1: Elektrisk fluks gjennom en skive Normalvektoren til en skive med radius 0.10 m danner en vinkel på 30 grader med et uniformt elektrisk felt på 2.0*103 N/C. Bestem den elektriske fluksen gjennom skiven.
Elektrisk fluksEks 2: Elektrisk fluks gjennom en terning En terning med sidelengder lik L er plassert med to av sine sider normalt på et uniformt elektrisk felt E. Bestem den totale elektriske fluksen gjennom terningen forårsaket av dette feltet.
Elektrisk fluksEks 3: Elektrisk fluks ut av en kule En positiv ladning q = 3.0 C befinner seg i sentrum av en kule med radius 0.20 m. Bestem den elektriske fluksen ut av kulen forårsaket av denne ladningen.
Gauss lovDef E R Q E Q
Gauss’ lovGauss’ lov på differentiell form Elektromotorisk spenning (ems) Magnetisk fluks Faradays induksjonslov Gauss’ divergensteorem for 3dim vektorfelt
Gauss’ lovGunstige betingelser for bruk av Gauss’ lov 1 2 3 Flaten er lukket I hvert punkt på flaten er E enten normal eller tangentiell til flaten E er seksjonsvis konstant over den delen av flaten hvor E er normal til flaten Eksempel (uendelig lang, tynn, ladet stav): Flaten er lukket (sylinderflate) E er normal på sylinderens sideflate og null i sylinderens endeflater E er konstant over sylinderens sideflate 1 2 3
Gauss lovFelt fra en ladd ledende kule + + + + + + + +
Gauss lovFelt fra en uniformt ladd kule + + + + + + + + + + + + + + + + + + + + + + + + + + E-felt inne i kula
Gauss lovFelt fra en uniformt ladd plate + = Ladning pr flate-enhet + E + E + +
Gauss lovFelt fra en ledende ladd plate + + + + E E + + + + + + + + + + E E + + + + E + +
Gauss lovFelt fra to motsatt ladde, ledendeplater + - + - + - + - + - + - + - + - + E - + E -
Gauss lov for gravitasjonDef g Newtons gravitasjonslov R M g M
Gauss lov for gravitasjonEks 1: Tyngdeakselerasjon R Beregn tyngdeakselerasjonen i en avstand R (større enn jordradien) fra jordsenteret. M0 er massen av hele jorda.
Gauss lov for gravitasjonEks 2: Hull i jorden Vi graver et hull i jorden og slipper en stein ned i hullet. Bestem akselerasjonen til steinen som funksjon av avstanden R fra jordsenteret. R0 er jordradien. M0 er massen av hele jorda. M er massen av den delen av jorda som er innenfor Gauss-flaten. R