510 likes | 863 Views
외환관리실무 I (Option Market) - 외환관리사 실무과정 -. 제일은행 자금부 과장 신 종 찬 (johnshin@kfb.co.kr). Δ Su -fu. Δ S - f. Δ Sd -fd. Option Valuation by Binomial Trees. Concept of Binomial Option Valuation Method (No-arbitrage approach)
E N D
외환관리실무 I (Option Market)- 외환관리사 실무과정 - 제일은행 자금부 과장 신 종 찬 (johnshin@kfb.co.kr)
ΔSu -fu ΔS - f ΔSd -fd Option Valuation by Binomial Trees • Concept of Binomial Option Valuation Method (No-arbitrage approach) • 주식이 양 만큼과 옵션포지션(Short Call)으로 구성된 포트폴리오(위험-중립 포지션: 기초자산의 가격변동에 따른 포트폴리오의 가치변화가 없음)의 가격변화는 다음 그림과 같을 것임. • 주가가 변할 경우 위험-중립 포트폴리오 이므로, 아래와 같은 식이 성립할 것이다. • 무위험 수익률을 r이라 한다면, 포트폴리오의 현재가치는 혹은 S0 - f 이다.
Option Valuation by Binomial Trees (Cont’d) • 변동성을 감안한 이항모델의 일반화 (Risk neutral approach) • 위험중립적인 투자가가 향후 주가가 p(위험중립확률: Risk neutral probability)의 확률로 상승하거나 (1-p)의 확률로 하락할 것으로 가정한다면, 이항모델의 1구간 후의 주식가격은 다음과 같다. • 한편, 충분히 적은 기간 동안의 주가의 분산을 살펴보면(분산 = E(x2)- E(x)2), • 아래와 같이 요약될 수 있다. • 만약 여기에 가정을 하면, 위의 식을 만족하면서 다음과 같을 결과가 도출될 것(Cox, Ross, Rubinstein 1979년)이고, 옵션 가격도 계산될 것임.
Su2d1 f3,2 Su2d0 f2,2 Su1d1 f2,1 Su1d2 f3,1 SuNd0 fN,N SuN-1d0 fN-1,N-1 Su0d3 f3,0 Su0d2 f2,0 SuN-1d1 fN, N-1 ~ ~ ~ ~ ~ ~ SuN-1d1 fN-1,N-2 SuN-2d2 fN,N-2 ~ ~ Su1d0 f1,1 Su3d0 f3,3 SujdN-j fN,j S f Suj-1dN-j-1 fN-1,j-1 Su0d1 f1,0 Suj-1dN-j+1 fN,j-1 ~ ~ ~ ~ ~ ~ ~ ~ Su0dN-1 fN,1 Su0dN fN,0 Option Valuation by Binomial Trees (Cont’d) • 변동성을 감안한 이항모델의 일반화(Risk neutral approach) (Cont’d) • 이항을 일반화 시켰을 때, 향후 주가의 움직임은 다음과 같고, 그때의 옵션가치는 그림과 같이 표현될 것임. • 이때 각 이항에서의 옵션가격은 다음과 같이 표현될 수 있음.
Option Valuation by Binomial Trees (Cont’d) • 이항모델의 통화옵션 적용 • 배당이 없는 주식에서와 마찬가지로, 무위험 수익률 r대신 r-rf의 수익을 보이므로, 다음과 같은 관계가 성립한다. • 따라서 통화옵션의 경우도, 주식과 마찬가지로 이항모델을 이용하여 옵션가격을 산출할 수 있다. 단, 통화옵션의 할인계수가 Exp(-rt)임을 유의해야 한다.
$110.25 fuu=$10.25 $105 fu $99.75 fud=$0 $100 f $95 fd $90.25 fdd=$0 Binomial Option Pricing Example I (Call Option) • Option pricing of Non-dividend stock • 현재 주가가 $100이고, 1개월간 5.00%상승하거나 5.00%하락이 예상된다면, 2개월 행사가격 $100인 콜옵션 가격은 얼마인가? 단, 무위험 수익률은 연속복리로 년 6%로 가정하고, 2기간으로 Pricing하면… • 무위험 차익거래에 의한 가격산정 (No-arbitrage or Riskless hedge approach) • 1개월 간의 할인율 = 1/(1+6%/12)= 0.9950 or exp(-6%*1/12)=0.9950 • fu의 경우, • Δ= • Δ*$105 – fu = 0.9950 * (Δ*$110.25-$10.25) • fu = $ 5.6118 • fd의 경우, • Δ= , Δ*$95 – fd = 0.9950 * (Δ*$99.75-$0) • fd = $0 • f의 경우, • Δ= , Δ*$100 – f = 0.9950 * (Δ*$105-$5.6118) • f = $3.0725 =5.6118 =3.0725 =0
$110.25 fuu=$10.25 $105 fu $99.75 fud=$0 $100 f $95 fd $90.25 fdd=$0 Binomial Option Pricing Example I (Call Option) • Risk-neural probability에 의한 가격산정 • 1개월 간의 할인율 = 1/(1+6%/12)= 0.9950 or exp(-6%*1/12)=0.9950 • fu의 경우, • fu = 0.9950*(0.550125*$10.25+(1-0.550125)*$0)=$5.6106 • fd의 경우, • fd = 0.9950*(0.550125*$0+(1-0.550125)*$0)=$0 • f의 경우, • f = 0.9950*(0.550125*$5.6106+(1-0.550125)*$0) = $3.0711 • 가격차이는 P값의 계산과정에서 발생 =5.6106 =3.0711 =0
$110.25 fuu=$0 $105 fu $98.7 fud=$1.3 $100 f $94 fd $88.36 fdd=$11.64 Binomial Option Pricing Example II (Put Option) • Option pricing of Non-dividend stock • 현재 주가가 $100이고, 1개월간 5.00%상승하거나 6.00%하락이 예상된다면, 2개월 행사가격 $100인 풋옵션 가격은 얼마인가? 단, 무위험 수익률은 연속복리로 년 6%로 가정하고, 2기간으로 Pricing한다면… • 무위험 차익거래에 의한 가격산정 (No-arbitrage or Riskless hedge approach) • 1개월 간의 할인율 = 1/(1+6%/12)= 0.9950 or exp(-6%*1/12)=0.9950 • fu의 경우, • Δ= • Δ*$105 – fu = 0.9950 * (Δ*$110.25-$0) • fu = $ 0.52884 • fd의 경우, • Δ= , Δ*$94 – fd = 0.9950 * (Δ*$98.7-$1.3) • fd = $5.5 • f의 경우, • Δ= , Δ*$100 – f = 0.9950 * (Δ*$105-$0.52884) • f = $2.5485 =0.52884 =2.5485 =5.5
$110.25 fuu=$0 $105 fu $98.7 fud=$1.3 $100 f $94 fd $88.36 fdd=$11.64 Binomial Option Pricing Example II (Put Option) • Risk-neural probability에 의한 가격산정 • 1개월 간의 할인율 = 1/(1+6%/12)= 0.9950 or exp(-6%*1/12)=0.9950 • fu의 경우, • fu = 0.9950*(0.5910*$0+(1-0.5910)*$1.3)=$0.5290 • fd의 경우, • fd = 0.9950*(0.5910*$1.3+(1-0.5910)*$11.64)=$5.5014 • f의 경우, • f = 0.9950*(0.5910*$0.5290+(1-0.5910)*$5.5014) = $2.5498 • 가격차이는 P값의 계산과정에서 발행 =0.5290 =2.5498 =5.5014
1,350 fuuu=0 1,300 fuu 1,250 fuud=0 1,250 fu 1,200 f 1,200 fud 1,150 fudd=50 1,150 fd 1,100 fdd 1,050 fddd=150 Binomial Option Pricing Example III (Currency Option) • Pricing of Currency Option • 현재 달러/원 환율이 달러당 1,200원이고, 달러화 3개월 금리가 2.0%이고, 원화 3개월 금리가 5.0%일 때 행사가격이 1,200원인 3개월 미국식 달러 풋 옵션의 가격은 얼마인가? 단, 매월 달러/원 환율이 50원씩 상승하거나 하락한다고 할때 3기간에 대한 옵션 가격을 구하면… • 무위험 차익거래에 의한 가격산정 (No-arbitrage or Riskless hedge approach) • 1개월 간의 할인율 = exp(-5%*1/12)=0.99584 • fuu의 경우, • Δ= • Δ*1,300 – fuu = 0.99584 * (Δ*1,350- 0) • fuu = 0 • fud의 경우, • Δ= • Δ*1,200 – fud = 0.99584 * (Δ*1,250- 0) • fud = 22.4 • fdd의 경우, • Δ= • Δ* 1,100 – fdd = 0.99584 * (Δ* 1,150 - 50) • fdd = 95.008, => fdd = 100 =0 =22.4 =100
1,350 fuuu=0 1,300 fuu=0 1,250 fuud=0 1,250 fu 1,200 fud=22.4 1,200 f 1,150 fudd=50 1,150 fd 1,100 fdd=100 1,050 fddd=150 Binomial Option Pricing Example III (Currency Option) • 무위험 차익거래에 의한 가격산정 (Cont’d) • fu의 경우, • Δ= • Δ*1,250 – fu = 0.99584 * (Δ*1,300- 0) • fuu = 9.989 • fd의 경우, • Δ= • Δ*1,150 – fd = 0.99584 * (Δ*1,200- 22.4) • fud = 57.233 • f의 경우, • Δ= • Δ* 1,200 – f = 0.99584 * (Δ* 1,250 -9.989) • f = 31.113 =9.989 =31.113 =57.233
Black-Scholes Model • Black-Scholes Option Pricing Model • Fisher Black, Myron Scholes, & Robert Merton, 1973 • Nobel Prize for economics, 1997 • 기본가정 • 주가는 일정한 평균과 변동성을 가지며 로그분포를 보인다. • 주가의 공매가 완전한 상태이고, 세금과 거래비용이 없다. • 만기까지 배당이 없으며, 무위험 차익거래의 기회가 없다. • 무위험 수익률은 만기까지 일정하며, 거래가 연속적이다. • 유럽식 Call 옵션가격 • 위의 가정이 성립할 때, 무배당 주식의 유럽식 옵션 가격은 다음과 같다.
Black-Scholes Model (Cont’d) • 유럽식 Put 옵션 가격 • Key Result • Key Result의 증명 • 이때, 아래와 같이 가정하고, • H(Q)는 Q에 대한 확률밀도함수 일 때,
m (lnF-m)/s Black-Scholes Model (Cont’d) • Key Result의 증명 (Cont’d)
Black-Scholes Model (Cont’d) • Black-Scholes 통화옵션식의 도출 • 환율 또한 주가와 같이 GBM을 따르고, 위험-중립적이라면, 아래와 같은 식이 성립한다. • 환율은 연속복리 배당(q)을 하는 주가와 동일하므로, S0 대신 S0 Exp(-qT) 혹은 S0 Exp(-rf*T)를 대입한 것과 동일하다.(달러/원 환율의 경우 rf는 달러화 금리) • 앞서, Black-Scholes는 아래의 왼쪽 식과 같았으므로, 오른쪽의 유럽식 통화옵션 가격식이 도출된다.
+Call +Forward - Put Black-Scholes Model (Cont’d) • Put-Call Parity • 유럽식 콜옵션과 풋 옵션간에는 아래와 같은 관계가 성립한다. • 즉 Call매입과 Put 매도는 선물환의 매입포지션과 동일.
Spot USD Call Lower Volatility Higher Volatility 900 1100 1200 1300 1500 Volatility • Volatility의 의미 • High volatility means you have higher change(probability) to win the option at the maturity, so, other things being equal, the premium also much expensive.
Volatility (Cont’d) • Volatility & Time value • An increase in volatility does not affect the intrinsic value of an option, but does have an interesting effect on the time value of an option. • The time value of a one-year European call with a strike of Y100 calculated for a range of spot prices at different volatility levels result in the above curve. • For any ATM option, an increase in volatility will proportionately increase its time value
과거 현재 미래 Historical Vol. Implied Vol. Futures Vol. Volatility (Cont’d) • High volatility equals high premium but nobody can calculate the future volatility • Types of volatilities • Futures volatility • Historical volatility • Implied volatility • Volatility smile • Risk Reversal • Volatility smile is not always uniform in both directions. • To reflect the preference for upside or downside protection
Volatility (Cont’d) • Volatility Quotation
Volatility (Cont’d) • Volatility smile • The Black & Scholes model used to price options assumes that future spot rates are lognormally distributed around the forward rate (A variable with a lognormal distribution has the property that its natural logarithm is normally distributed). In reality, extreme outcomes are more likely than the lognormal distribution suggests - The B&S model underestimates the probability of strong directional spot movements and therefore undervalues options with low deltas • 1st Adjustment : Traders routinely compensate for these differences by adjusting the at-the-money-forward vols for out-of-the-money strikes to more accurately reflect the perceived risk The manner in which traders adjust the at-the-money volatilities gives rise to the characteristic “smile” of the vol curve - This is called the Smile Effect • For example, if the actual distribution shows fatter tails than that suggested by the lognormal distribution (what is termed “excess kurtosis”), low delta options will have been underpriced using B&S • Traders compensate for this by adding a spread above the ATMF vols to both the low and high strike options
Volatility (Cont’d) • Volatility smile (Cont’d) • 2nd Adjustment : Also, the B&S model does not take into account any market trends. Accordingly, option traders have to adjust their vol prices such that strikes lying in the trend will be more expensive than the strikes symmetrical to them compared to the outright. • In theory, all strikes should trade at the same vol since they are all based on the same underlying instrument. • The adjustments which traders make to the ATMF vols in order to quote high strike or low strike options result in the characteristic smile profile. • Smile Effect in a neutral market: • The market has a neutral bias towards higher or lower strikes • The price structure is symmetrical • Only extreme strikes are adjusted
Volatility (Cont’d) • Volatility smile (Cont’d) • Smile Effect in a bullish market: • When high strike options are in demand, the implied volatilities need to be adjusted higher • The price structure is asymmetrical • The market favors higher strikes (OTM Calls) • Smile Effect in a bearish market: • When low strike options are in demand, the implied volatilities need to be adjusted higher • The price structure is asymmetrical • The market favors lower strikes (OTM Puts) • Since the curve may be shaped like a lop-sided smile or a smirk or a frown, people have been using the term “volatility skew” instead of volatility smile because the term “skew” doesn’t imply the sort of symmetry that the term “smile”does. • A “smile curve” can be defined for every maturity. We may have a rather neutral sentiment on the short term but a bullish view on the long term. Check the concept of “volatility surface” (strike x maturity x vol)
Volatility (Cont’d) • Risk Reversal • Now that it is clear how and why high strike and low strike vols differ from the ATMF vols, it becomes important to understand how this is measured or obtained in the market • The risk reversal is the volatility spread between the level of vol quoted in the market for a high strike option and the vol for a low strike option • Risk reversals are collars, where the bought option and the sold option have the same delta • As options with the same delta have the same sensitivity to the vol (or same vega), risk reversals are vega neutral • As a vega neutral structure, the vol spread will be more important than the actual vol level • R/R are quoted as vol spreads • They will also have to reflect an eventual asymmetry of the “Smile Effect” • The market convention is to quote the difference between 25 delta strikes, however any other delta may be priced • So, ignoring bid offer, if the vol of a 25 delta JPY put is 10.80%, and if the vol of a 25 delta JPY call is 11.20%, then the risk reversal would be quoted as “0.40, JPY calls over,” indicating that JPY calls are favored over JPY puts (a skewness towards a large yen appreciation)
Volatility (Cont’d) • Risk Reversal (Cont’d) • Instead of quoting exercise prices directly, the convention in the options market is to quote prices for options with particular deltas. Like the practice of quoting implied volatilities, the rationale for this is to allow comparison of quotes without needing to take into account changes in the underlying price. When referring to the delta of options, market participants also drop the sign and the decimal point of the delta. So for example, an OTM put option with a B&S delta of -0.25 is referred to as a 25-delta put. • A 25-delta risk reversal is obtained by buying a 25-delta option and selling a 25-delta option in the opposite direction. • In this example, the OTM call more expensive than the equally OTM put (compared with what would be predicted by the B&S model)
Volatility (Cont’d) • Risk Reversal (Cont’d) • R/R shows what direction the market is favoring. • R/R also gives an indication of the strength of the market’s expectations. • R/R indicates the degree of skewness compared with the lognormal distribution, which itself is positively skewed. • Traders need to reach an agreement on the actual level of volatilities for the call and put when trading R/R. • To translate risk reversal quotes into actual vols, one requires information on strangles or butterflies.
Volatility (Cont’d) • Risk Reversal (Cont’d) • A 25 delta strangle is obtained by buying (or selling) a 25 delta call and a 25 delta put. • Strangles are quoted in absolute volatility terms – as the average of call and put volatilities (often expressed as a spread over ATMF vol). • A long 25 delta butterfly is the combination of a short ATMF straddle and a long 25 delta strangle. • Butterflies are quoted as a spread between the strangles and the straddles. • Observing both the risk reversal and the strangle (or the butterfly) allows the calculation of two separate volatilities for the call and put. • For example, from the following mid-market information, ATMF vol = 10.0 Butterfly (or Strangle quoted as a spread over ATMF vol) = 0.6 R/R = 1.0 call over Then Strangle = 10.0 + 0.6 = 10.6, Vol for the call = 10.6 + 1.0 / 2 = 11.1, Vol for the put = 10.6 – 1.0 / 2 = 10.1
Volatility (Cont’d) • Volatility Smile
Volatility (Cont’d) • Historical Volatility 구하기 • 과거의 특정기간 동안의 시장가격을 자연로그 (Natural Log, Ln)의 변화율(일중 로그수익률)로 구한 후 그 값에 대한 표준편차를 구하는 것. • Monthly Volatility: (Daily Data 사용 시) 1Month Volatility : Ln(St/St-1)*(과거 21일간의 표준편차)* 252 2Month Volatility : Ln(St/St-1)*(과거 42일간의 표준편차)* 252 3Month Volatility : Ln(St/St-1)*(과거 63일간의 표준편차)* 252 • 1year :252 영업일 • 재무계산에서의 로그수익률사용 • 단순수익률(Simple yield : {V2-V1} / V1)의 단점 : 예를 들어, 매년 말 자산가치가 100, 120, 100으로 변한다면, 매년의 단순 수익률은 20%, -16.7%일 것이다. 이 경우 단순 수익률의 합은 +3.3%가 된다. 그렇지만, 우리는 직관적으로 수익이 없음을 알 수 있다. • 로그수익률(Logarithm yield : Ln(V2/V1) )의 경우 수익률은 18.23%, -18.23%로 수익률의 합은 0임을 알 수 있다. • 재무계산에서는 이러한 오류와 계산의 편의를 위해 로그수익률을 사용한다. Ln(V2/V1) + Ln(V3/V2) + ….. + Ln(Vn/Vn-1) = Ln(V2/V1 * V3/V2 * ….. * Vn/Vn-1) = Ln(Vn/V1)
=LN(B4/B3) =STDEV(C4:C8)*SQRT(252) =STDEV(C4:C24)*SQRT(252) Volatility (Cont’d) • Historical Volatility 구하기(Cont’d)
수출업자 헤지결과 환율 $ Put 매입 Option Strategy : 1. Hedging using Put Option (Protective Put) • 달러 Long포지션의 Put옵션을 이용한 헤지(Protective Put) Underlying Long Position + Put Buy = Call Sell
$ Call 매입 헤지결과 환율 수입업자 Option Strategy : 2. Hedging using Call Option • 달러 Short포지션의 Call옵션을 이용한 헤지
$Holder 환율 $ Call 매도 Option Strategy : 3. Covered Call Writing • 달러 Long포지션의 Call옵션 매도로 전략적인 Put옵션 포지션 운용 Underlying Long Position + Call Sell = Put Sell
1165 1205 1240 LONG STRADDLE Option Strategy : 4. Straddle • Long Straddle (Spot 1200) Buy USD Call 1205 + Buy USD Put at 1205 • Expectation : 시장이 너무나 요동을 쳐서 어떻게 될지 전망이 안됨. 그러나 만기까지는 현재보다 높거나 낮은 수준으로 예상. • Strategy : Premium은 높게 주더라도 양방향으로 벌어 보자. • Premium : 75won • Payoff • Below 1165: Start gaining • 1165-1240 : Loss Area (Max 75원) • Above 1240 : Start gaining • Strip & Strap • Strip : Buy 2 Put & Buy 1 Call • 환율의 상승보다 하락가능성이 클 때 • Strap : Buy 1 Put & Buy 2 Call • 환율의 하락보다 상승가능성이 클 때
1170 1200 1230 LONG STRANGLE Option Strategy : 5. Strangle • Long Strangle (Spot 1200) Buy USD Call 1230 + Buy USD Put at 1170 • Expectation : 시장방향은 도대체 전망이 되지 않으나 만기에는 현재수준보다 위로나 아래로 현저한 차이가 있을 것임. • Strategy : Straddle에 비해 premium도 적게 내고 적게 벌자 • Premium : 40won • Payoff • Below1130 : Start gaining • 1130~1270 : Loss Area (Max loss 40원) • Above 1270 : Start gaining
1205 1216 1230 BULL CALL SPREAD Option Strategy : 6. Bull Spread with Call • Spread Position • 동일한 형태(Call or Put)의 옵션을 2개 이상 사고파는 거래 • Bull Call Spread (Spot 1200) • Call Option 매입.매도를 통해 Bullish한 시장에서 이익을 얻음. Buy USD Call at 1205 + Sell USD Call at 1230 (ITM Call Buy + OTM Call Sell) • Expectation : 자신은 없지만 현재 수준보다는 달러강세 예상 • Strategy : Premium도 절약하고/ loss도 줄이되/ 큰 profit도 기대 안 함. • Premium : 11won 지급 • Payoff • Below 1205 : Pay premium (11원) • 1205~1216 : Loss (S-1205-11) • 1216~1230 : Profit(S-1205-11) • Above 1230 : Profit(14원 = 1230-1205-11)
1205 1219 1230 BULL PUT SPREAD Option Strategy : 7. Bull Spread with Put • Bull Put Spread (Spot 1200) • Put Option 매입.매도를 통해 Bullish한 시장에서 이익을 얻음. Buy USD Put at 1205 + Sell USD Put at 1230 (OTM Put Buy + ITM Put Sell) • Expectation : 자신은 없지만 현재 수준보다는 달러강세 예상 • Strategy : 조금의 Premium 수취 / loss도 줄이되/ 큰 profit도 기대 안 함. • Premium : 11won 수취 • Payoff • Below 1205 : Loss(-14원 = -1230+1205+11) • 1205~1219 : Loss (S-1230+11) • 1219~1230 : Profit(S-1230+11) • Above 1230 : Premium(11원)
1205 1219 1230 BEAR PUT SPREAD Option Strategy : 8. Bear Spread with Put • Bear Put Spread (Spot 1200) • Put Option 매입.매도를 통해 Bearish한 시장에서 이익을 얻음. Buy USD Put at 1230 + Sell USD Put at 1205 (ITM Put Buy + OTM Put Sell) • Expectation : 자신은 없지만 현재 수준보다는 달러약세 예상 • Strategy : 적은 Premium 지출 / loss도 줄이되/ 큰 profit도 기대 안 함. • Premium : 11won 지급 • Payoff • Below 1205 : Profit(14원 = 1230-1205-11) • 1205~1219 : Profit (1230-S-11) • 1219~1230 : Loss(1230-S-11) • Above 1230 : Premium(11원)
1200 CALL CALENDAR SPREAD Option Strategy : 9. Calendar Spread with Call • Calendar Spread (Spot 1200) • 동일 행사가격, 만기 불일치 Buy 6M USD Call 1200 + Sell 3M USD Call at 1200 • Expectation : 환율이 당분간 약세를 보이다 강세로 반전할 것을 예상 • Strategy : 적은 Premium 지출로 기간별 환율예상에 대한 수익 / loss 가능성도 있음 • Premium : 10won 지급
1200 PUT CALENDAR SPREAD Option Strategy : 10. Calendar Spread with Put • Calendar Spread (Spot 1200) • 동일 행사가격, 만기 불일치 Buy 6M USD Put 1200 + Sell 3M USD Put at 1200 • Expectation : 환율이 당분간 강세를 보이다 약세로 반전할 것을 예상 • Strategy : 적은 Premium 지출로 기간별 환율예상에 대한 수익 / loss 가능성도 있음 • Premium : 10won 지급 • Diagonal Spread • 행사가격과 만기가 모두 불일치하는 Call 옵션 혹은 Put 옵션의 매입과 매도
1170 1200 1230 BUTTERFLY SPREAD Option Strategy : 11. Butterfly Spread • Long Butterfly Spread with Call (Spot 1200) Buy USD Call at 1170 + Buy USD Call at 1230 + Sell 2 USD Call at 1200 • Expectation : 환율이 현수준에서 상당히 안정적으로 머물 것이다. • Strategy : 적은 Premium 지급 / 제한된 loss / 소폭의 profit • Premium : 10won 지급 • Payoff • Below 1170 : Premium(-10원) • 1170~1200 : Loss (S-1170-10) • 1200~1230 : Profit(1230-S-10) • Above 1230 : Premium(-10원) • Long Butterfly Spread with Put Buy USD Put at 1170 + Buy USD Put at 1230 + Sell 2 USD Put at 1200
Forward Risk Reversal 1180 1240 Option Strategy : 12. Risk Reversal • Risk Reversal Buy USD call at 1242, sell USD put at 1180 • Expectation : 특별한 상승/약세요인이 없어 1150 ~ 1300의 Range예상. • Strategy : 선물환에 비해 많이 벌지도/잃지도 않고 싶다. • Payoff • Below 1180 : Start losing (Less loss than Forward) • 1180~1242 : No impact (Saved hedging cost) • Above 1242 : Start earning (less profit than Forward)
1170 1200 1242 Option Strategy : 13. Seagull • Seagull Buy USD call at 1200, sell USD put at 1170, and sell USD call at 1230 • Expectation : 큰 상승은 없으나 조금의 상승가능성은 있어보이고, 큰 하락은 없어보임. • Strategy : 비용없이 범위(1170~1230)내에서 Call의 효과를 내고, 실현가능성이 없어 보이는 잠재이익을 포기
initial Exposure U$ Short (Won Long) Buy U$ Call Option (X= SH) + SH Sell U$ Put Option (X= SL) + = SL Option Strategy : 14. Range Forward • 달러 Short포지션의 Risk-Reversal 을 이용한 제한적 위험운용 Underlying + Risk Reversal = Spread Position
Initial Exposure U$ Long(Won Short) Buy U$ Put Option (X= SH) SH + Sell 2* U$ Call Option (X= SH) = + S SH Option Strategy : 15. Target Forward • 달러 Long포지션의 옵션포지션을 이용한 전략적 포지션운용 • 현재의 선물환보다 높은 환율에서 선물환을 매도하여 이익을 확정하고, 달러화 약세위험을 커버. • 만기환율에 따라 추가적인 달러매도 거래로 환위험을 관리. • 제로코스트
Buy U$ Put Option (X= SH) Initial Exposure U$ Long(Won Short) SH + Sell U$ Call Option + Sell U$ FWD Call Option (X= SH) = + S SH Option Strategy : 16. Double Forward • 달러 Long포지션의 옵션포지션을 이용한 전략적 포지션운용 • 현재의 선물환보다 높은 환율에서 선물환을 매도하여 이익을 확정하고, 달러화 약세위험을 커버. • 만기환율의 움직임에 따라 추가적인 선물환 거래로 환위험을 관리할 수 있다. • 제로코스트
Buy U$ Put Option (X= SL) Initial Exposure U$ Long(Won Short) SL + Sell 50% U$ Call Option = + SL S Option Strategy : 17. Participating Forward • 달러 Long포지션의 옵션포지션을 이용한 전략적 포지션운용 • 달러화 공급이 예상될 때, 달러화 약세에 대한 위험을 커버하고, 강세에 대한 이익을 얻을 수 있다. • 제로코스트
Epilogue • Q&A ? • Other issues in Option markets? • Any issue of derivatives market including swap and credit derivatives ? • More Information • E-mail : johnshin@kfb.co.kr • Call : 02-3702-4412 • Class presentation file : http://vols.com.ne.kr/fxpractice_mar03.html