1 / 10

Fizyka III wykład 3

Fizyka III wykład 3. d r inż. Monika Lewandowska. Fale materii. 1924 książe L.V.R.P. de Broglie, nagroda Nobla 1929. Hipoteza: Każdej poruszającej się cząstce materialnej o pędzie p i energii E można przyporządkować falę o długości i częstotliwości. Louis de Broglie 1929.

nile
Download Presentation

Fizyka III wykład 3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fizyka III wykład 3 dr inż. Monika Lewandowska

  2. Fale materii 1924 książe L.V.R.P. de Broglie, nagroda Nobla 1929 Hipoteza: Każdej poruszającej się cząstce materialnej o pędzie p i energii E można przyporządkować falę o długości i częstotliwości Louis de Broglie 1929 Potwierdzenie: doświadczenie Davissona – Germera (1927) C. Davisson i L. Germer • d = 0.091 nm • Ek =54 eV • = 65o • l = 0.165 nm

  3. Równanie Schrödingera 1926 Erwin Schrödinger, nagroda Nobla 1933 E. Schrödinger 1933 Ep Ek Gdy energia potencjalna cząstki nie zależy od czasu można rozseparować współrzędne przestrzenne i czas E - całkowita energia cząstki - częstość fali de Broglie’a cząstki

  4. Nieskończona studnia potencjału R/H/W rys. 40.2 Rozwiązanie dla Lokalizacja fali w przestrzeni prowadzi do kwantyzacji energii, czyli powstania stanów o dyskretnych energiach. n = 1, 2, 3 ….

  5. Nieskończona studnia potencjału – poziomy energetyczne m = 9.1 x 10-31 kg L = 100 pm E2=4E1=150.8 eV, E3 = 9E1=339.3 eV, itd. R/H/W rys. 40.3 Schemat poziomów energetycznych elektronu zlokalizowanego w nieskończonej studni potencjału o szerokości zbliżonej do rozmiarów atomu. R/H/W rys. 40.4 a) Wzbudzenie elektronu ze stanu podstawowego do trzeciego stanu wzbudzonego, b)-d) różne sposoby powrotu elektronu do stanu podstawowego.

  6. Nieskończona studnia potencjału – funkcje falowe Stałą A wyznaczamy z warunku normalizacji funkcji falowej: Uwaga: n=0 nie jest możliwą liczba kwantową, bo wówczas y(x)=0 Nie jest możliwy stan podstawowy o zerowej energii. Układy zlokalizowane w stanie podstawowym muszą mieć pewną minimalna energię (energia drgań zerowych). R/H/W rys. 40.6 Gęstość prawdopodobieństwa znalezienia elektronu uwięzionego w jednowymiarowej nieskończonej studni potencjału dla czterech stanów o n = 1,2,3 i 15.

  7. Skończona studnia potencjału • Model bliższy sytuacjom rzeczywistym, takim jak • np. elektron w atomie, nukleon w jadrze atomowym. • Cząstka jest uwięziona (zlokalizowana) w studni, jeśli jej • energia E < U0 − cząstka w stanie związanym. II I III Rozwiązanie dla x > L i x < 0 Rozwiązanie dla Stałe A, B, C i a oraz możliwe wartości energii E stanów związanych wyznacza się z warunków ciągłości funkcji y i jej pochodnej w punktach x=0 i x=L oraz z warunku normalizacji funkcji y.

  8. Skończona studnia potencjału – funkcje falowe Fala materii wnika w ściany studni, tzn. w obszar zabro-niony przez zasadę zacho-wania energii w mechanice klasycznej (zjawisko tunelo-we). Wnikanie to jest tym silniejsze im większa jest wartość liczby kwantowej n. Długość fali de Broglie’a dla każdego stanu jest większa niż w przypadku studni nieskończonej. Energia dla każdego stanu związanego jest mniejsza niż w przypadku studni nie-skończonej. Gęstość prawdopodobieństwa dla elektronu w nieskończonej studni potencjału (R/H/W rys. 40.6)

  9. Skończona studnia potencjału – energia cząstki Energia stanów związanych jest niższa niż w przypadku studni nieskończonej. Elektrony o energii E > U0 nie mogą zostać uwięzione w skończonej studni. Takie elektrony nie są zlokalizo-wane (elektrony swobod-ne), a ich energia może przyjmować dowolne war-tości. =37.7eV Schemat poziomów energetycz-nych elektronu w nieskończonej studni potencjału o szerokości 100 pm (R/H/W rys. 40.3)

  10. Atom wodoru Funkcje falowe zależą od trzech liczb kwantowych n, l, m - na każdą współrzędną przestrzenną przypada jedna liczba kwantowa. Energie stanów związanych elektronu w atomie wodoru są takie same jak w modelu Bohra. Funkcja falowa stanu podstawowego

More Related