1 / 43

P RINCI P LES OF INHER I T ANC E AND V ARI A TION

P RINCI P LES OF INHER I T ANC E AND V ARI A TION. P R INCIPL E S OF I N H ERI T AN C E A ND V A R I A T I ON. Genetics: deals with the inheritance, as well as the variation of characters from parents to offsprings.

ninaelliott
Download Presentation

P RINCI P LES OF INHER I T ANC E AND V ARI A TION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PRINCIPLESOFINHERITANCEAND VARIATION

  2. PRINCIPLESOFINHERITANCEAND VARIATION • Genetics:dealswiththeinheritance,aswellasthevariationofcharactersfromparentstooffsprings. • Inheritance:istheprocessbywhichcharactersarepassedonfromparenttoprogeny. • Variation:isthedegreebywhichprogenydifferfromtheir • parents.

  3. MENDEL’SLAWSOF INHERITANCE: • GregorMendel.Conductedhybridizationexperimentsongardenpeasforsevenyears(1856– 1863)andproposedlawsofinheritance. • Mendelconductedartificialpollination/crosspollinationexperimentsusingseveraltrue-breedingpealines. • Atruebreedinglineisonethat,havingundergone • continuousself-pollinationforseveralgenerations. • Mendelselected14true-breeding peas’ plant varieties, as pair’s which were similar except for one character with contrastingtraits.

  4. INHERITANCEOFONEGENE:

  5. Mendel’sproposition: •  • Mendelproposedthatsomethingwasbeingstablypasseddown,unchanged,fromparenttooffspringthroughthegametes,oversuccessivegenerations.Hecalledthesethingsas‘factors’. • Nowadaywecallthemasgenes. • Geneisthereforearetheunitsofinheritance. • Geneswhichcodesofapairofcontrastingtraitsareknownasalleles,i.e.theyareslightlydifferentformsofthesamegene.

  6. Alphabetsused: • CapitallettersusedforthetraitexpressedattheF1stage. • Smallalphabetfortheothertrait. • ‘T’ isusedforTalland‘t’ is used for dwarf. • ‘T’ and‘t’ are alleles of each other. • HenceinplantsthepairofallelesforheightwouldbeTT.Tt.ortt. • Inatruebreedingtallordwarfpeavarietytheallelicpairofgenes forheightareidenticalorhomozygous,TTandttrespectively. • TTandttarecalledthegenotype. • Ttplantisheterozygousforgenescontrollingonecharacter(height). • Descriptivetermstallanddwarfarethephenotype.

  7. Testcross: • WhenF1hybridiscrossedbackwiththerecessiveparent,itisknownastestcross. • Itisusedtoknowthegenotypeofthegivenplant/animal.

  8. LawofDominance: • Charactersarecontrolledbydiscreteunitscalledfactors. • Factorsoccurinpairs. • Inadissimilarpairoffactorsonememberofthepairdominates(dominant)theother(recessive).

  9. LawofSegregation: • TheallelesdonotshowanyblendingandthatboththecharactersarerecoveredassuchintheF2generationthoughoneoftheseisnotseenattheF1stage. • Theparentscontaintwoallelesduringgameteformation;thefactorsorallelesofapairsegregateorseparatefromeachothersuchthatagametereceivesonlyoneofthetwofactors. • Homozygousparentproducesallgametesthataresimilari.econtainsametypeofallele. • Heterozygous parents’ produces two kinds of gametes each • havingoneallelewithequalproportion.

  10. Incompletedominance: • Whenacrossbetweentwopurebreedisdoneforonecontrastingcharacter,theF1hybridphenotypedosenotresembleeitherofthetwoparentsandwasinbetweenthetwo,calledincompletedominance. • Inheritanceofflowercolorinthedog • flower(snapdragonorAntirrhinumsp.)isagood • exampleofincompletedominance. • F2generationphenotypicratiois1:2:1insteadof3:1asMendelianmonohybridcross. • GenotypicratioofF2generationis1:2:1.

  11. Co–dominance: • F1resembledeitherofthetwoparents(completedominance). • F1offspringwasin-betweenoftwoparents(incompletedominance). • F1generationresemblesbothparentssidebysideiscalled(co-dominance). • Bestexampleofco-dominanceistheABObloodgroupinginhuman. • ABObloodgroupiscontrolledbythegeneI. • TheplasmamembraneoftheRBChassugarpolymers(antigen)thatprotrudefromitssurfaceandthekindofsugariscontrolledbythegene-I. • ThegeneIhasthreeallelesIA,IBandi. • TheallelesIAandIBproduceaslightlydifferentformofsugarwhileallelei • doesn’t produce any sugar. • EachpersonpossessesanytwoofthethreeIgenealleles. • IAandIBarecompletelydominantoveri. • WhenIA,andIBpresenttogethertheybothexpresstheirowntypesofsugar;thisbecauseofco-dominance.HenceredbloodcellshavebothAandBtypesugars.

  12. MultipleAlleles: • ExampleofABObloodgroupingproducesagoodexampleofmultiplealleles. • Therearemorethantwoi.e.threeallele,governingthesamecharacter.

  13. Asinglegeneproductmayproducemorethanoneeffect: • Starchsynthesisinpeaseedsiscontrolledbyonegene. • IthastwoallelesBandb. • StarchissynthesizedeffectivelybyBBhomozygoteandtherefore, • largestarchgrainsareproduced. • The‘bb’ homozygoushaslessefficiencyhenceproducesmallergrains. • Aftermaturationoftheseeds,BBseedsareroundandthebbseedsarewrinkle. • Heterozygous(Bb)produceroundseedandsoBseemstobedominantallele,butthestarchgrainsproducedareofintermediatesize. • Ifstarchgrainsizeisconsideredasthephenotype,thenfromthisangletheallelesshowincompletedominance.

  14. INHERITANCEOFTWOGENES: • LawofindependentAssortment: • Whentwocharacters(dihybrid)arecombinedinahybrid,segregationofonepairoftraitsisindependentoftheotherpairoftraits.

  15. CHROMOSOMALTHEORYOFINHERITANCE: • Why Mendel’s theory was remained unrecognized? • Firstlycommunicationwasnoteasyinthosedaysandhiswork • couldnotbewidelypublicized. • Secondlyhis concept of genes (or factors, in Mendel’s word) as stableanddiscreteunitsthatcontrolledtheexpressionoftraitsand of the pair of alleles which did not’ blend’ with each other, wasnotacceptedbyhiscontemporariesasanexplanationfortheapparentlycontinuousvariationseeninnature. • ThirdlyMendel’s approach of using mathematics to explain biologicalphenomenawastotallynewandunacceptabletomanyofthebiologistsofhistime. • Finallyhecouldnotprovideanyphysicalprooffortheexistence • offactors.

  16. RediscoveryofMendel’sresult: • 1990threescientists(deVries,CorrensandvonTschermak)independently rediscovered Mendel’s result on theinheritanceofcharacter

  17. Chromosomaltheoryofinheritance: • ProposedbyWalterSuttonandTheodoreBoveryin1902. • Theyworkoutthechromosomemovementduringmeiosis. • Thebehaviorofchromosomeswasparalleltothebehaviorof • genes and used chromosome movement to explain Mendel’s laws. • SuttonunitedtheknowledgeofchromosomalsegregationwithMendelianprinciplesandcalleditthechromosomaltheoryofinheritance. • Chromosomeandgenesarepresentinpairsindiploidcells. • Homologouschromosomesseparateduringgameteformation(meiosis) • Fertilizationrestoresthechromosomenumbertodiploidcondition. • Thechromosomaltheoryofinheritanceclaimsthat,itisthe • chromosomesthatsegregateandassortindependently.

  18. Experimentalverificationofchromosomaltheory: • ExperimentalverificationofchromosomaltheoryofinheritancebyThomasHuntMorganandhiscolleagues. • Morganworkedwithtinyfruitflies,Drosophilamelanogaster. • WhyDrosophila? • Suitableforgeneticstudies. • Grownonsimplesyntheticmediuminthelaboratory. • Theycompletetheirlifecycleinabouttwoweeks. • Asinglematingcouldproducealargenumberofprogenyflies. • Cleardifferentiationofmaleandfemaleflies • Havemanytypesofhereditaryvariationsthatcanbeseenwithlowpowermicroscopes.

  19. LinkageandRecombination • Morganhybridizedyellowbodied,whiteeyedfemales • tobrown-bodied,redeyedmaleandintercrossedtheirF1 • progeny. • HeobservedthatthetwogenesdidnotsegregateindependentlyofeachotherandtheF2ratiodeviatedverysignificantlyfrom9:3:3:1ratio(expectedwhenthetwogenesareindependent). • Whentwogenesinadihybridcrossweresituatedonthesamechromosome,theproportionofparentalgenecombinationswasmuchhigherthanthenon-parentaltype. • Morganattributedthisduetothephysicalassociationorlinkageofthetwogenesandcoinedthetermlinkage.

  20. Linage:physicalassociationofgenesonachromosome. • Recombination:thegenerationofnon-parentalgene • combinations. • Morganfoundthatevenwhengenesweregroupedonthesamechromosome,somegeneswereverytightlylinked(showedverylowrecombination)whileotherswereloosely • linked(showedhigherrecombination). • Thegeneswhiteandyellowwereverytightlylinkedandshowed • 1.3percentrecombination. • Thegeneswhiteandminiaturewingshowed37.2percentrecombination,hencelooselylinked. • AlfredSturtevantusedthefrequencyofrecombinationbetweengenepairsonthesamechromosomeasameasureofthedistancebetweengenesand‘mapped’ theirpositiononthechromosome.

  21. POLYGENICINHERITANCE: • Humanhavenodistincttallorshortinsteadawholerangeofpossibleheights. • Suchtraitsaregenerallycontrolledbythreeormoregenesandarethuscalledpolygenictrait. • Besidestheinvolvementofmultiplegenespolygenicinheritancealsotakesintoaccounttheinfluenceofenvironment. • Humanskincolorisanotherclassicexampleofpolygenicinheritance. • Inapolygenictraitthephenotypereflectsthecontributionofeachallelei.e.theeffectofeachalleleisadditive. • AssumethatthreegenesA,B,Ccontroltheskincolourinhuman. • DominantformsA,B;ANDCresponsiblefordarkskincolourandtherecessiveformsa,b,cforlightcoloroftheskin. • Genotypewithdominantalleles(AABBCC)willhavedarkestskincolor. • Genotypewithrecessivealleles(aabbcc)willhavelightestskincolour. • Othercombinationsalwayswithintermediatecolour.

  22. PLEIOTROPY: • Asinglegenecanexhibitmultiplephenotypicexpression,suchgeneiscalledpleiotropicgene. • Themechanismofpleiotropyinmostcasesistheeffectofageneonmetabolicpathwayswhichcontributestowardsdifferentphenotypes. • Phenylketonuriaadiseaseinhumanisanexampleofpleiotropy. • Thisdiseaseiscausedduetomutationinthegenethatcodefor • theenzymephenylalaninehydroxylase. • Phenotypicexpressioncharacterizedby:- • Mentalretardation • Reductioninhairs. • Reductioninskinpigmentation.

  23. SEXDETERMINATION: • Henking(1891)tracedspecificnuclearstructureduringspermatogenesisofsomeinsects. • 50%ofthespermreceivedthesespecificstructures,whereas50%spermdidnotreceiveit. • HenkinggaveanametothisstructureastheX-body. • X-bodyofHenkingwaslateronnamedasX-chromosome.

  24. Sex-determinationofgrasshopper: • Sex-determinationingrasshopperisXX-XOtype. • Alleggbears one‘X’chromosome along withautosomes. • Somesperms (50%)bear’sone‘X’chromosome and 50% do • not. • Egg fertilizedwith sperm (with‘X’chromosome) became • female(22+XX). • Egg fertilizedwith sperm (without‘X’chromosome) became • male(22+X0)

  25. Sexdeterminationininsectsandmammals (XX-XYtype): • Bothemaleandfemalehassamenumberofchromosomes. • FemalehaveautosomesandapairofXchromosomes.(AA+XX) • Malehaveautosomesandonelarge ‘X’ chromosome and • one very small ‘Y-chromosomes.(AA+XY) • Thisiscalledmaleheterogammetyandfemale • homogamety.

  26. Sexdeterminationinbirds: • FemalebirdshavetwodifferentsexchromosomesdesignatedasZandW. • MalebirdshavetwosimilarsexchromosomesandcalledZZ. • Suchtypeofsexdeterminationiscalledfemaleheterogammetyandmalehomogamety.

  27. SexdeterminationinHoneybee: • Sexdeterminationinhoneybeebasedonthenumberofsetsofchromosomesanindividualreceives. • Anoffspringformedfromthefertilizationofaspermandanegg • developedintoeitherqueen(female)orworker(female). • Anunfertilizedeggdevelopsasamale(drone),bymeansofparthenogenesis. • Themalehavehalfthenumberofchromosomethanthatof • female. • Thefemalearediploidhaving32chromosomesandmalesarehaploidi.e.having16numbersofchromosomes. • Thisiscalledhaplodiploidsexdeterminationsystem. • Maleproducespermsbymitosis,theydonnothavefatherandthuscannothavesons,buthavegrandsons.

  28. MUTATION: • MutationisaphenomenonwhichresultsinalterationofDNAsequencesandconsequentlyresultsinchangesinthegenotypeandphenotypeofanorganism. • Inadditiontorecombination,mutationisanotherphenomenonthatleadstovariationinDNA. • Loss(deletion)orgain(insertion/duplication)ofasegmentofDNAresultsinalterationinchromosomes. • Sincegenesarelocatedonthechromosome,alterationinchromosomesresultsinabnormalitiesoraberration. • Chromosomalaberrationsarecommonlyobservedincancerouscells. • MutationsalsoariseduetochangeinasinglebasepairofDNA.Thisisknownaspointmutation.E.g.sicklecellanemia. • DeletionandinsertionsofbasepairsofDNAcausesframeshiftmutations.

  29. GENETICDISORDERS: • PedigreeAnalysis: • Analysisoftraitsinseveralofgenerationsofafamilyiscalledthepedigreeanalysis. • Inthepedigreeanalysistheinheritanceofaparticulartraitisrepresentedinthefamilytreeovergenerations.

  30. AutosomalDominant • Affectedindividualshaveatleastoneaffectedparent • Thephenotypegenerallyappearseverygeneration • Twounaffectedparentsonlyhaveunaffected • offspring • Traitsarecontrolledbydominantgenes • Bothmalesandfemalesareequallyaffected • Traitsdonotskipgenerations • e.g.polydactyly,tonguerollingabilityetc

  31. Autosomalrecessive: • Unaffectedparentscanhaveaffectedoffspring • Traitscontrolledbyrecessivegenesand • Appearonlywhenhomozygous • Bothmaleandfemaleequallyaffected • Traitsmayskipgenerations • 3:1ratiobetweennormalandaffected. • Appearanceofaffectedchildrenfromnormalparents(heterozygous) • Allchildrenofaffectedparentsarealsoaffected. • e.g.-Albinism,sicklecellanaemiaetc.

  32. MendelianDisorder: • Geneticdisordersgroupedintotwocategories– • Mendeliandisorder • Chromosomaldisorder • Mendeliandisordersaremainlydeterminedbyalterationormutationinthesinglegene. • ObeytheprincipleofMendelianinheritanceduring • transmissionfromonegenerationtoother. • Canbeexpressedinpedigreeanalysis. • E.g.Haemophilia,colorblindness,Cysticfibrosis,Sicklecellanemia,Phenylketonuria,Thalasemiaetc.

  33. Hemophilia: • Inthisdiseaseasingleproteinthatisapartofthecascadeofproteinsinvolvedintheclottingofbloodisaffected.Duetothisinanaffectedindividualasimplecutwillresultinnon-stopbleeding. • Sexlinkedrecessivedisease. • Thediseasestransmittedfromunaffectedcarrierfemaletosomeofthemaleprogeny. • Femalebecominghemophilicisextremelyrarebecausemotherofsuchafemaleatleastcarrierandthefathershouldbehemophilic. • Affectedtransmitsthediseaseonlytothesonnottothedaughter. • Daughtercanreceivethediseasefrombothmotherandfather.

  34. Sicklecellanaemia: • ThedefectiscausedduetosubstitutionofGlutamicacid(Glu)byValine(Val)atthesixthpositionofthebetaglobinchainofthehaemoglobinmolecule. • Substitutionofaminoacidtakesplaceduetothesinglebasesubstitutionatthesixth • codonofthebetaglobingenefromGAGtoGUG. • ThemutanthaemoglobinmoleculeundergoespolymerizationunderlowoxygentensioncausingthechangeintheshapeoftheRBCfrombiconcavedisctoelongatedsicklelikestructure. • Thisisanautosomeslinkedrecessivetrait. • Transmittedfromparentstotheoffspringwhenboththeparentsarecarrierforthegene • (heterozygous). • Thisdiseaseiscontrolledbysinglepairofallele,HbA,andHbS. • Therearethreepossiblegenotypes(HbAHbA,HbAHbS,andHbSHbS. • OnlyhomozygousindividualsforHbS(HbSHbS)showthediseasedphenotype. • Heterozygous(HbAHbS)individualsappearapparentlyunaffectedbuttheyarecarrierofthediseaseasthereis50percentprobabilityoftransmissionofthemutantgenetotheprogeny.

  35. Phenylketonuria: • Autosomalrecessivetrait. • Inbornerrorofmetabolism. • Theaffectedindividuallackoneenzymecalledphenylalaninehydroxylasethatconvertstheaminoacidphenylalaninetotyrosine. • Intheabsenceoftheenzymephenylalanineaccumulatedand convertedintophenylpyruvicacidandotherderivatives. • Accumulationoftheseresultsinmentalretardation. • Thesederivativesexcretedthroughkidney.

  36. Chromosomaldisorders: • Causedduetoabsenceorexcessorabnormalarrangementofoneormorechromosome. • Failureofsegregationofchromatidsduringcelldivisioncycleresultsinthegainorlossofchromosome(s), • calledAneuploidy. • Failureofcytokinesisaftertelophasestageofcelldivisionresultsinanincreaseinawholesetofchromosomeinanorganismandthisphenomenoniscalledpolyploidy. • Trisomy:additionalcopyofachromosomemaybeincludedinanindividual(2n+1). • Monosomy:anindividualmaylackoneofanyonepairof • chromosomes(2n-1)

  37. Downsyndrome: • Causedduetopresenceofanadditionalcopyofthechromosomenumber21(trisomyof21). • ThisdisorderwasfirstdescribedbyLangdonDown(1866). • Shortstaturewithsmallroundhead. • Furrowedtongue • Partiallyopenedmouth • Palmisbroadwithcharacteristicpalmcrease. • Physical,psychomotorandmentaldevelopmentisretarded.

  38. Klinefelter’ssyndrome: • CausedduetothepresenceofanadditionalcopyofX-chromosomeresultingintoakaryotypeof47,(44+XXY). • Overallmasculinedevelopment. • Alsodevelopfemininecharacter(developmentofbreasti.e.Gynaecomastia) • Individualsaresterile. • Turner’s syndrome: • CausedduetotheabsenceofoneoftheX-chromosomesi.e.45(44+X0). • Suchfemalesaresterileasovariesare • rudimentary. • Lackofothersecondarysexualcharacters.

More Related