180 likes | 522 Views
Combining several transformations The order is very important This power point will demonstrate which order to do them in This will then be applied to a Sine Curve. Y= x 2. Y= (2x) 2. Horizontal stretch factor ½ HIVO HOVIS Horizontal In side – Horizontal Opposite. Y= (x–3) 2.
E N D
Combining several transformations The order is very important This power point will demonstrate which order to do them in This will then be applied to a Sine Curve
Y= (2x)2 Horizontal stretch factor ½ HIVO HOVIS Horizontal In side – Horizontal Opposite
Y= (x–3)2 Horizontal translation +3 HIVO HOVIS Horizontal In side – Horizontal Opposite
More Combined Transformations f(x) = (2x – 1)2 f(x) = (x–1)2 f(x) = (x)2 Step 1 Horizontal translation +1
More Combined Transformations f(x) = (2x–1)2 f(x) = (2x – 1)2 f(x) = (x–1)2 Step 2 Horizontal stretch factor ½ All x values are ½ their original value X intercept at x = ½ as expected if 2x–1 = 0 then x = ½
Y= (2x–3)2 Horizontal translation +3 Horizontal stretch factor ½
So the order is: • Translate horizontally left or right • Stretch horizontally • Stretch Vertically • Translate vertically HIVO Horizontal Inside Vertical Outside HOVIS Horizontal Opposite Vertical Is Same
Trig Transformations y y=sint t We need to sketch the graph of y = 3sin(5t+90)+2
Trig Transformations y period = 360 y=sint t Crosses x axis at 0, 180, 360, 540
Trig Transformations y Translate horizontally left or right y=sin(t+90) t Horizontal translation of -90 Inside = horizontal opposite Crosses x axis at 90, 270, 450
Wave frequency = 5 Period = = 72 72 Trig Transformations y y=sin(5t+90) t Stretch horizontally Horizontal stretch of Inside = horizontal opposite Crosses x axis at 18, 54, 90
Trig Transformations y Stretch Vertically y=3sin(5t+90) t Vertical stretch of factor 3 Outside = vertical same
Trig Transformations y y=3sin(5t+90)+2 t +2 Vertical translation of +2 Outside = vertical same
Sketch the graph of • y = 1sin(t + 45) • y = 2sin(t + 30) • y = 3sin(2t – 90) • y = 4sin(3t + 60)
1 2 3 4 y = 2sin(t + 30) y = 1sin(t + 45) Translate horizontally by –30Stretch vertically factor of 2 Translate horizontally by –45 y = 3sin(2t – 90) y = 4sin(3t + 60) Translate by horizontally–60Stretch horizontally by 1/3Stretch vertically factor of 4 Translate horizontallyby +90Stretch horizontally by ½ Stretch vertically factor of 3