300 likes | 411 Views
Report from the World-Wide Calorimeter and Forward Detector Project Day. G. Eigen, Bergen U/DESY. Analog HCAL Meeting, DESY 26-11-2003. Agenda of Worldwide Calorimeter & Forward Detector Project Day.
E N D
Report from the World-Wide Calorimeter and Forward Detector Project Day G. Eigen, Bergen U/DESY Analog HCAL Meeting, DESY 26-11-2003
Agenda of Worldwide Calorimeter & Forward Detector Project Day TIME TITLE OF TALK SPEAKER 14:00-14.25 Status of GLC Calorimeter R&D Kiyotomo Kawagoe (Kobe U.) 14:25-14.45 Performance of a Strip Array EM Calorimeter Hiroyuki Matsunaga (Tsukuba U.) 14:45-15.05 Silicon Calorimetry Il Hon Park (Ewha Women's U) 15:05-15:25 Status of CALICE Si-W Calorimeter Vaclav Vrba (Prague) 15:25-15:35 Status of LCcal R&D Stefano Miscetti (Frascati) 15.35-15:55 Status of ECAL Activities in the US David Strom (Oregon) 15:55-16:20 Status of Analog HCAL studies Erika Garutti (DESY) 16.20-16:45 Status of Digital HCAL Activities Jose Repond (Argonne) 16:40-17:05 Coffee break 17.05-17:25 Analog HCAL Simulation Studies Vassily Morgunov (DESY) 17.25-17:45 Simulation and Algorithm Development for Digital HCAL Vishnu Zutshi (NIU) 17:45-18.00 Studies for Calorimeter Prototypes and Schedule Volker Korbel (DESY) 18:00-18.15 Testbeam Plans Steve Magill (Argonne) 18:15-18:35 Optimization of the Design of the Forward Calorimeters Agnieszka Kowal (Krakov) 18:35-18:50 Hardware Status of Forward Calorimeters Igor Emiliantchik (Minsk) • All talks are on the webpage http://www-flc.desy.de/Calice-wwm/montpellier-agenda.html G. Eigen, U Bergen/DESY
ECAL • Scin Tile/Pb sandwich Analog KEK, Japanese U • Scin Strips/Pb sandwich Analog KEK, Japanese U • Si pixel/W sandwichAnalog “CALICE”, “SD” Oregon • Scin Tile/W sandwichAnalog offset layers Colorado • Si-Scin hybrid /W Analog “LCCAL”, Kansas • Dense CrystalsAnalog PbWO4 Caltech, Iowa G. Eigen, U Bergen/DESY
Scintillator-Pb ECAL Configurations Tiles +WLS fibers Sci strips +WLS fibers 4cm x 4cm x 1mm-cell Kiyotomo Kawagoe (Kobe U.) G. Eigen, U Bergen/DESY
Energy resolution (EMC) Strip-array EMC • 4mm-Pb/1mm-Sci (ZEUS type): 15.4%/sqrt(E)+0.2% (1994) • 4mm-Pb/4mm-Sci (Strip-array): 12.9%/sqrt(E)+0% (2002) • 4mm-Pb/1mm-Sci/1mm-Acryl (Tile/fiber): to be tested in March 2004 ZEUS type EMC 15.4%/E 0.2% Data: 12.9%/E 0.% MC: 11.8%/E 0.% Kiyotomo Kawagoe (Kobe U.) G. Eigen, U Bergen/DESY
Combined analysis of SHmax & DESY Minical • The position detector is used as a pre-shower detector • Etot=Eminical+aEpreshower Energy resolution Very preliminary Very preliminary a G. Eigen, U Bergen/DESY Kiyotomo Kawagoe (Kobe U.)
SHmax+Minical: Energy Resolution/Linearity • Resolution/linearity with a=0.56 • Resolution was degraded by the large gap between detectors • Energy resolution agrees with Minical Measurements Energy resolution Very preliminary Very preliminary Electron energy (GeV) Electron energy (GeV) G. Eigen, U Bergen/DESY Kiyotomo Kawagoe (Kobe U.)
Spatial resolution s = 2.0 mm around shower max Position resolution for 4GeV electron Hiroyuki Matsunaga (Tsukuba U.) G. Eigen, U Bergen/DESY
Scintillator-W ECAL Design & Plans • 45 layers: 1.75 mm W 2 mm scintillator (55 cm2) 150 m Tyvek 1 mm gap • Alternate layers are offset • Effective spatial =2.52.5 cm2 R & D plans Light collection efficiency, uniformity Find cost-effective construction method Explore extruded scintillator Check energy flow with offset ght detection options (APD, David Strom (Oregon) G. Eigen, U Bergen/DESY
HCAL • Scin Strips-fiber/Pb Analog Japan • Scin Tile/SS sandwichAnalog CALICE Tile CAL”, ACFA • Scin “pixels”/SSDigital 9 cm2 hexagonal tiles NIU • RPC/SSDigital 1 cm X 1 cm pads (many) • GEM/SSDigital 1 cm X 1 cm pads (UTA) G. Eigen, U Bergen/DESY
Tile-Fiber-Lightyield Center/straight WLS-fiber Diagonal/bent WLS-fiber • No stress on fiber, • Fiber end reflector • =tile reflector • more stress on fiber, • fiber end reflector • =tile reflector L=7.85cm L=7,85cm L=5cm • clear RO fibers: • l=1-3.5m to photodetector • light attenuation <18% • 1.4 mm drilled & polished hole in centre • For 5 cm straight WLS-fiber RO • Cheep, for Si PM’s only • Single looped fiber • strong fiber bending, • most stress on fibers, • probably aging damages? L=20cm Light yield of MIP’s (used for calibration): 18-25 pe on photocathode G. Eigen, U Bergen/DESY Volker Korbel (DESY)
Light Collection Readout with Si PM Readout with PM ~ 11 p.e./MIP Readout with APDs: Hamamatsu S8550 Jose Repond (Argonne) G. Eigen, U Bergen/DESY
The MiniCal Structure e+ 1-6 GeV Layer configuration 0.1 cm Ø WLF 97% Shower contained • 1-loop fiber inserted • into groove • Single tiles covered • by 3M reflector 0.5 cm active 2 cm steel Erika Garutti (DESY)
Silicon PM Calibration • Cosmic and beam calibration of all tiles w/o pre-amplifier • reproducibility studies (LPI) • calibration analysis (MEPHI) • Single photoelectron peak visible with fast pre-amplifier • for calibration only One photoelectron peak MIP peak LED pedestal 1 MIP = 25 pe. Erika Garutti (DESY) G. Eigen, U Bergen/DESY
Energy Resolution • good agreement for PM & SiPM • systematic uncertainty needs to be determined (fix at 5%) • SiPM is not corrected for saturation effects • Fit function: • Fit values for PM / MC a = 0.1 0.2 / 0.4 0.1 b = 21.0 0.4 / 17. 1 0.1 Preliminary Erika Garutti (DESY) G. Eigen, U Bergen/DESY
APD Beam Tests LAL/ECAL preamp Charge sensitive Larger gain Prague preamp Voltage sensitive APD s~11 chs~6 ch s~23 chs~13 ch pedestal Preamp required gain : APD gain >200: 12 mV/7.2fC APD gain <100: 12 mV/1.8fC Beam MIP G. Eigen, U Bergen/DESY Erika Garutti (DESY)
Pre-amp Test of Single Tile with Source Charge sensitive Minsk preampVoltage sensitive preamp Prague Design ped Sr MIP Sr MIP ped LED LED • Gate adjustment : 90% signal contained • 300 ns 120 ns • noise comparison: s(ped)/(MIP-ped) • 5.0/85 = 0.06 12.4/82 = 0.15 • MIP resolution:s(MIP)/(MIP-ped) • 36.4/85 = 0.42 42.3/82 = 0.52 • We have 2 additional preamp prototypes for testing G. Eigen, U Bergen/DESY Erika Garutti (DESY)
HCAL Studies in Japan • Use 1-4 GeV e- beam at KEK, 10-200 GeV at FNAL (46.7±0.6)/E% G. Eigen, U Bergen/DESY Kiyotomo Kawagoe (Kobe U.)
Simulations G. Eigen, U Bergen/DESY
Prototype Layout G. Eigen, U Bergen/DESY Vassily Morgunov (DESY)
Neutron Component G. Eigen, U Bergen/DESY Vassily Morgunov (DESY)
Software Compensation Simple weighting G. Eigen, U Bergen/DESY Vassily Morgunov (DESY)
Single Particle E Resolution Non-projective geometry Vishnu Zutshi (NIU) G. Eigen, U Bergen/DESY
Multiple thresholds Vishnu Zutshi (NIU) G. Eigen, U Bergen/DESY
Reconstructed Jet Resolution Reconstructed Z mass 60% better =0.26 ZZ Events Digital eflow Cal only =0.16 G. Eigen, U Bergen/DESY Vishnu Zutshi (NIU)
Prototypes&Beam Tests G. Eigen, U Bergen/DESY
3, 6 and 12 cm Example: pad sizes increase x 2 20 16 26 10 30 6 G. Eigen, U Bergen/DESY Volker Korbel (DESY)
Physics prototype stack • Absorber plates: • Metal sheet: • EN 10 029-16D x 1005 x 1005 S G • Steel: • Stahl EN 10 025-Fe 360 B • 36 layers, Fe, • 16 +/- 0.95 mm, • flatness 3 mm • cut to 100x100 cm2 • Cassettes: • -Housing plates provided by • producer of cassettes • -Sandwich structure: • 6.5 mm scintillator + fibers • 6.5 mm is max • also for other detector layers • 2 x 2 mm cover plates, +/- 0.95 • 100 x100 cm outer dimensions • Thickness tolerances >0.5 mm • Cassette weight ~32 kg • total Physics prototype weight ~6 t G. Eigen, U Bergen/DESY Volker Korbel (DESY)
Tile-HCAL P-PT for E-flow studies • Simulation studies needed to specify • Active volume • tile sizes vs depth • tile grouping to cells • lateral leakage • longitudinal leakage • increasing absorber thickness in depth? 10 GeV pions 100 cm Leakage detector needed! 100 GeV pions G. Eigen, U Bergen/DESY Volker Korbel (DESY)
Testbeam Venues Steve Magill (Argonne) G. Eigen, U Bergen/DESY