1 / 30

Report from the World-Wide Calorimeter and Forward Detector Project Day

Report from the World-Wide Calorimeter and Forward Detector Project Day. G. Eigen, Bergen U/DESY. Analog HCAL Meeting, DESY 26-11-2003. Agenda of Worldwide Calorimeter & Forward Detector Project Day.

Download Presentation

Report from the World-Wide Calorimeter and Forward Detector Project Day

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Report from the World-Wide Calorimeter and Forward Detector Project Day G. Eigen, Bergen U/DESY Analog HCAL Meeting, DESY 26-11-2003

  2. Agenda of Worldwide Calorimeter & Forward Detector Project Day TIME TITLE OF TALK SPEAKER 14:00-14.25 Status of GLC Calorimeter R&D Kiyotomo Kawagoe (Kobe U.) 14:25-14.45 Performance of a Strip Array EM Calorimeter Hiroyuki Matsunaga (Tsukuba U.) 14:45-15.05 Silicon Calorimetry Il Hon Park (Ewha Women's U) 15:05-15:25 Status of CALICE Si-W Calorimeter Vaclav Vrba (Prague) 15:25-15:35 Status of LCcal R&D Stefano Miscetti (Frascati) 15.35-15:55 Status of ECAL Activities in the US David Strom (Oregon) 15:55-16:20 Status of Analog HCAL studies Erika Garutti (DESY) 16.20-16:45 Status of Digital HCAL Activities Jose Repond (Argonne) 16:40-17:05 Coffee break 17.05-17:25 Analog HCAL Simulation Studies Vassily Morgunov (DESY) 17.25-17:45 Simulation and Algorithm Development for Digital HCAL Vishnu Zutshi (NIU) 17:45-18.00 Studies for Calorimeter Prototypes and Schedule Volker Korbel (DESY) 18:00-18.15 Testbeam Plans Steve Magill (Argonne) 18:15-18:35 Optimization of the Design of the Forward Calorimeters Agnieszka Kowal (Krakov) 18:35-18:50 Hardware Status of Forward Calorimeters Igor Emiliantchik (Minsk) • All talks are on the webpage http://www-flc.desy.de/Calice-wwm/montpellier-agenda.html G. Eigen, U Bergen/DESY

  3. ECAL • Scin Tile/Pb sandwich Analog KEK, Japanese U • Scin Strips/Pb sandwich Analog KEK, Japanese U • Si pixel/W sandwichAnalog “CALICE”, “SD” Oregon • Scin Tile/W sandwichAnalog offset layers Colorado • Si-Scin hybrid /W Analog “LCCAL”, Kansas • Dense CrystalsAnalog PbWO4 Caltech, Iowa G. Eigen, U Bergen/DESY

  4. Scintillator-Pb ECAL Configurations Tiles +WLS fibers Sci strips +WLS fibers 4cm x 4cm x 1mm-cell Kiyotomo Kawagoe (Kobe U.) G. Eigen, U Bergen/DESY

  5. Energy resolution (EMC) Strip-array EMC • 4mm-Pb/1mm-Sci (ZEUS type): 15.4%/sqrt(E)+0.2% (1994) • 4mm-Pb/4mm-Sci (Strip-array): 12.9%/sqrt(E)+0% (2002) • 4mm-Pb/1mm-Sci/1mm-Acryl (Tile/fiber): to be tested in March 2004 ZEUS type EMC 15.4%/E  0.2% Data: 12.9%/E  0.% MC: 11.8%/E  0.% Kiyotomo Kawagoe (Kobe U.) G. Eigen, U Bergen/DESY

  6. Combined analysis of SHmax & DESY Minical • The position detector is used as a pre-shower detector • Etot=Eminical+aEpreshower Energy resolution Very preliminary Very preliminary a G. Eigen, U Bergen/DESY Kiyotomo Kawagoe (Kobe U.)

  7. SHmax+Minical: Energy Resolution/Linearity • Resolution/linearity with a=0.56 • Resolution was degraded by the large gap between detectors • Energy resolution agrees with Minical Measurements Energy resolution Very preliminary Very preliminary Electron energy (GeV) Electron energy (GeV) G. Eigen, U Bergen/DESY Kiyotomo Kawagoe (Kobe U.)

  8. Spatial resolution s = 2.0 mm around shower max Position resolution for 4GeV electron Hiroyuki Matsunaga (Tsukuba U.) G. Eigen, U Bergen/DESY

  9. Scintillator-W ECAL Design & Plans • 45 layers: 1.75 mm W 2 mm scintillator (55 cm2) 150 m Tyvek 1 mm gap • Alternate layers are offset • Effective spatial =2.52.5 cm2 R & D plans  Light collection efficiency, uniformity  Find cost-effective construction method  Explore extruded scintillator  Check energy flow with offset ght detection options (APD, David Strom (Oregon) G. Eigen, U Bergen/DESY

  10. HCAL • Scin Strips-fiber/Pb Analog Japan • Scin Tile/SS sandwichAnalog CALICE Tile CAL”, ACFA • Scin “pixels”/SSDigital 9 cm2 hexagonal tiles NIU • RPC/SSDigital 1 cm X 1 cm pads (many) • GEM/SSDigital 1 cm X 1 cm pads (UTA) G. Eigen, U Bergen/DESY

  11. Tile-Fiber-Lightyield Center/straight WLS-fiber Diagonal/bent WLS-fiber • No stress on fiber, • Fiber end reflector • =tile reflector • more stress on fiber, • fiber end reflector • =tile reflector L=7.85cm L=7,85cm L=5cm • clear RO fibers: • l=1-3.5m to photodetector • light attenuation <18% • 1.4 mm drilled & polished hole in centre • For 5 cm straight WLS-fiber RO • Cheep, for Si PM’s only • Single looped fiber • strong fiber bending, • most stress on fibers, • probably aging damages? L=20cm Light yield of MIP’s (used for calibration): 18-25 pe on photocathode G. Eigen, U Bergen/DESY Volker Korbel (DESY)

  12. Light Collection Readout with Si PM Readout with PM ~ 11 p.e./MIP Readout with APDs: Hamamatsu S8550 Jose Repond (Argonne) G. Eigen, U Bergen/DESY

  13. The MiniCal Structure e+ 1-6 GeV Layer configuration 0.1 cm Ø WLF 97% Shower contained • 1-loop fiber inserted • into groove • Single tiles covered • by 3M reflector 0.5 cm active 2 cm steel Erika Garutti (DESY)

  14. Silicon PM Calibration • Cosmic and beam calibration of all tiles w/o pre-amplifier •  reproducibility studies (LPI) •  calibration analysis (MEPHI) • Single photoelectron peak visible with fast pre-amplifier •  for calibration only One photoelectron peak MIP peak LED pedestal 1 MIP = 25 pe. Erika Garutti (DESY) G. Eigen, U Bergen/DESY

  15. Energy Resolution • good agreement for PM & SiPM • systematic uncertainty needs to be determined (fix at 5%) • SiPM is not corrected for saturation effects • Fit function: • Fit values for PM / MC a = 0.1 0.2 / 0.4  0.1 b = 21.0  0.4 / 17. 1  0.1 Preliminary Erika Garutti (DESY) G. Eigen, U Bergen/DESY

  16. APD Beam Tests LAL/ECAL preamp Charge sensitive Larger gain Prague preamp Voltage sensitive APD s~11 chs~6 ch s~23 chs~13 ch pedestal Preamp required gain : APD gain >200: 12 mV/7.2fC APD gain <100: 12 mV/1.8fC Beam MIP G. Eigen, U Bergen/DESY Erika Garutti (DESY)

  17. Pre-amp Test of Single Tile with Source Charge sensitive Minsk preampVoltage sensitive preamp Prague Design ped Sr MIP Sr MIP ped LED LED • Gate adjustment : 90% signal contained • 300 ns 120 ns • noise comparison: s(ped)/(MIP-ped) • 5.0/85 = 0.06 12.4/82 = 0.15 • MIP resolution:s(MIP)/(MIP-ped) • 36.4/85 = 0.42 42.3/82 = 0.52 • We have 2 additional preamp prototypes for testing G. Eigen, U Bergen/DESY Erika Garutti (DESY)

  18. HCAL Studies in Japan • Use 1-4 GeV e- beam at KEK, 10-200 GeV at FNAL (46.7±0.6)/E% G. Eigen, U Bergen/DESY Kiyotomo Kawagoe (Kobe U.)

  19. Simulations G. Eigen, U Bergen/DESY

  20. Prototype Layout G. Eigen, U Bergen/DESY Vassily Morgunov (DESY)

  21. Neutron Component G. Eigen, U Bergen/DESY Vassily Morgunov (DESY)

  22. Software Compensation Simple weighting G. Eigen, U Bergen/DESY Vassily Morgunov (DESY)

  23. Single Particle E Resolution Non-projective geometry Vishnu Zutshi (NIU) G. Eigen, U Bergen/DESY

  24. Multiple thresholds Vishnu Zutshi (NIU) G. Eigen, U Bergen/DESY

  25. Reconstructed Jet Resolution Reconstructed Z mass 60% better =0.26 ZZ Events Digital eflow Cal only =0.16 G. Eigen, U Bergen/DESY Vishnu Zutshi (NIU)

  26. Prototypes&Beam Tests G. Eigen, U Bergen/DESY

  27. 3, 6 and 12 cm Example: pad sizes increase x 2 20 16 26 10 30 6 G. Eigen, U Bergen/DESY Volker Korbel (DESY)

  28. Physics prototype stack • Absorber plates: • Metal sheet: • EN 10 029-16D x 1005 x 1005 S G • Steel: • Stahl EN 10 025-Fe 360 B • 36 layers, Fe, • 16 +/- 0.95 mm, • flatness 3 mm • cut to 100x100 cm2 • Cassettes: • -Housing plates provided by • producer of cassettes • -Sandwich structure: • 6.5 mm scintillator + fibers • 6.5 mm is max • also for other detector layers • 2 x 2 mm cover plates, +/- 0.95 • 100 x100 cm outer dimensions • Thickness tolerances >0.5 mm • Cassette weight ~32 kg • total Physics prototype weight ~6 t G. Eigen, U Bergen/DESY Volker Korbel (DESY)

  29. Tile-HCAL P-PT for E-flow studies • Simulation studies needed to specify • Active volume • tile sizes vs depth • tile grouping to cells • lateral leakage • longitudinal leakage • increasing absorber thickness in depth? 10 GeV pions 100 cm Leakage detector needed! 100 GeV pions G. Eigen, U Bergen/DESY Volker Korbel (DESY)

  30. Testbeam Venues Steve Magill (Argonne) G. Eigen, U Bergen/DESY

More Related