1 / 43

Fig. 16-12b

Eukaryotic replication. Origin of replication. Double - stranded DNA molecule. Parental (template ) strand. Daughter (new ) strand. Fig. 16-12b. 0.25 µm. Replication fork. Bubble. Two daughter DNA molecules. ( b ) Origins of replication in eukaryotes. 5 .

norah
Download Presentation

Fig. 16-12b

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Eukaryotic replication Origin of replication Double-stranded DNA molecule Parental (template) strand Daughter (new) strand Fig. 16-12b 0.25 µm Replication fork Bubble Two daughter DNA molecules (b) Origins of replication in eukaryotes

  2. 5 Ends of parental DNA strands Leading strand Lagging strand 3 Last fragment Previous fragment RNA primer Lagging strand 5 Fig. 16-19 3 Parental strand Removal of primers and replacement with DNA where a 3 end is available 5 3 Second round of replication 5 New leading strand 3 5 New lagging strand 3 Further rounds of replication Shorter and shorter daughter molecules

  3. 5 Ends of parental DNA strands Leading strand Lagging strand 3 Last fragment Previous fragment RNA primer Lagging strand 5 Fig. 16-19 3 Parental strand Removal of primers and replacement with DNA where a 3 end is available 5 3 Second round of replication 5 New leading strand 3 5 New lagging strand 3 Further rounds of replication Shorter and shorter daughter molecules

  4. Staining of telomeres Florescence In Situ Hybridization (FISH) Fig. 16-20 1 µm “probe” = (5’-CTAACC-3’)100

  5. 08_Figure37.jpg

  6. 5 end Hydrogen bond 3 end 1 nm 3.4 nm Fig. 16-7a 3 end 0.34 nm 5 end (a) Key features of DNA structure (b) Partial chemical structure

  7. Fig. 16-21a Nucleosome (10 nm in diameter) DNA double helix (2 nm in diameter) H1 Histone tail Histones DNA, the double helix Histones Nucleosomes, or “beads on a string” (10-nm fiber)

  8. Chromatid (700 nm) 30-nm fiber Fig. 16-21b Loops Scaffold 300-nm fiber Replicated chromosome (1,400 nm) 30-nm fiber Looped domains (300-nm fiber) Metaphase chromosome

  9. What are genes? DNA How do genes work? Mutant phenotypes Short aristae Cinnabar eyes Vestigial wings Brown eyes Black body 0 48.5 57.5 67.0 104.5

  10. What are genes? DNA How do genes work? A gene specifies the action of an enzyme (The “one-gene, one-enzyme” hypothesis) 1909- Garrod -“Inborn errors of metabolism in man” e.g. Alkaptonuria: presence of alkapton in urine due to lack of enzyme -underappreciated at the time…. 1942- Beadle and Tatum - Genetic studies in Bread Mold (Neurospora) show that biochemical reactions are controlled by genes

  11. Wild type Neurospora grows on minimal media Complete media (contains amino acids, nucleotides, vitamins, etc.) Minimal Media (lacks amino acids, nucleotides, vitamins, etc.)

  12. A wt B Complete media • X-rays • Set up 1000 multiple single spore cultures (in complete media) C

  13. A A Min. media wt B B Complete media Min. media Complete media • X-rays • Set up 1000 multiple single spore cultures (in complete media) • Test each for growth on minimal media C C Min. media Minimal Media

  14. A A A A A A A A Min. media Min. media Min. media Min. media Min. media Min. media Min. media +Lys +Val +Arg +Phe +Trp +His +Leu A A A A A A A • X-rays • Set up 1000 multiple single spore cultures (in complete media) • Test each for growth on minimal media • Retest on minimal media plus one component Min. media Min. media Min. media Min. media Min. media Min. media Min. media +Gln +Cys +Asn +Gly +Tyr +Asp +Glu A A A A A A Min. media Min. media Min. media Min. media Min. media Min. media +Ile +Met +Pro +Ala +Ser +Thr

  15. Multiple enzymes are required for argininebiosynthesis CONCLUSION Class Imutants (mutation in gene A) Class IImutants (mutation in gene B) Class IIImutants (mutation in gene C) Wild type Fig. 17-2c Precursor Precursor Precursor Precursor Gene A Enzyme A Enzyme A Enzyme A Enzyme A Ornithine Ornithine Ornithine Ornithine Gene B Enzyme B Enzyme B Enzyme B Enzyme B Citrulline Citrulline Citrulline Citrulline Gene C Enzyme C Enzyme C Enzyme C Enzyme C Arginine Arginine Arginine Arginine

  16. Multiple enzymes are required for argininebiosynthesis CONCLUSION Class Imutants (mutation in gene A) Class IImutants (mutation in gene B) Class IIImutants (mutation in gene C) Wild type Fig. 17-2c Precursor Precursor Precursor Precursor Gene A Enzyme A Enzyme A Enzyme A Enzyme A Ornithine Ornithine Ornithine Ornithine Gene B Enzyme B Enzyme B Enzyme B Enzyme B Citrulline Citrulline Citrulline Citrulline Gene C Enzyme C Enzyme C Enzyme C Enzyme C Arginine Arginine Arginine Arginine If we have an Argrequiring mutant, which gene is affected?

  17. RESULTS Classes of Neurospora crassa Wild type Class IIImutants Class Imutants Class IImutants Minimal medium (MM) (control) Fig. 17-2b MM + ornithine Condition MM + citrulline MM + arginine (control)

  18. CONCLUSION Class Imutants (mutation in gene A) Class IImutants (mutation in gene B) Class IIImutants (mutation in gene C) Wild type Fig. 17-2c Precursor Precursor Precursor Precursor Gene A Enzyme A Enzyme A Enzyme A Enzyme A Ornithine Ornithine Ornithine Ornithine Gene B Enzyme B Enzyme B Enzyme B Enzyme B Citrulline Citrulline Citrulline Citrulline Gene C Enzyme C Enzyme C Enzyme C Enzyme C Arginine Arginine Arginine Arginine

  19. DNA Protein RNA Replication Transcription Translation

  20. Fig. 17-3a-1 DNA TRANSCRIPTION mRNA (a) Bacterial cell

  21. Fig. 17-3a-2 DNA TRANSCRIPTION mRNA Ribosome TRANSLATION Polypeptide (a) Bacterial cell

  22. E. Coli LacZ DNA sequence (1 strand shown)- 3075 base pairs ATGACCATGATTACGGATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGCTTTGCCTGGTTTCCGGCACCAGAAGCGGTGCCGGAAAGCTGGCTGGAGTGCGATCTTCCTGAGGCCGATACTGTCGTCGTCCCCTCAAACTGGCAGATGCACGGTTACGATGCGCCCATCTACACCAACGTGACCTATCCCATTACGGTCAATCCGCCGTTTGTTCCCACGGAGAATCCGACGGGTTGTTACTCGCTCACATTTAATGTTGATGAAAGCTGGCTACAGGAAGGCCAGACGCGAATTATTTTTGATGGCGTTAACTCGGCGTTTCATCTGTGGTGCAACGGGCGCTGGGTCGGTTACGGCCAGGACAGTCGTTTGCCGTCTGAATTTGACCTGAGCGCATTTTTACGCGCCGGAGAAAACCGCCTCGCGGTGATGGTGCTGCGCTGGAGTGACGGCAGTTATCTGGAAGATCAGGATATGTGGCGGATGAGCGGCATTTTCCGTGACGTCTCGTTGCTGCATAAACCGACTACACAAATCAGCGATTTCCATGTTGCCACTCGCTTTAATGATGATTTCAGCCGCGCTGTACTGGAGGCTGAAGTTCAGATGTGCGGCGAGTTGCGTGACTACCTACGGGTAACAGTTTCTTTATGGCAGGGTGAAACGCAGGTCGCCAGCGGCACCGCGCCTTTCGGCGGTGAAATTATCGATGAGCGTGGTGGTTATGCCGATCGCGTCACACTACGTCTGAACGTCGAAAACCCGAAACTGTGGAGCGCCGAAATCCCGAATCTCTATCGTGCGGTGGTTGAACTGCACACCGCCGACGGCACGCTGATTGAAGCAGAAGCCTGCGATGTCGGTTTCCGCGAGGTGCGGATTGAAAATGGTCTGCTGCTGCTGAACGGCAAGCCGTTGCTGATTCGAGGCGTTAACCGTCACGAGCATCATCCTCTGCATGGTCAGGTCATGGATGAGCAGACGATGGTGCAGGATATCCTGCTGATGAAGCAGAACAACTTTAACGCCGTGCGCTGTTCGCATTATCCGAACCATCCGCTGTGGTACACGCTGTGCGACCGCTACGGCCTGTATGTGGTGGATGAAGCCAATATTGAAACCCACGGCATGGTGCCAATGAATCGTCTGACCGATGATCCGCGCTGGCTACCGGCGATGAGCGAACGCGTAACGCGAATGGTGCAGCGCGATCGTAATCACCCGAGTGTGATCATCTGGTCGCTGGGGAATGAATCAGGCCACGGCGCTAATCACGACGCGCTGTATCGCTGGATCAAATCTGTCGATCCTTCCCGCCCGGTGCAGTATGAAGGCGGCGGAGCCGACACCACGGCCACCGATATTATTTGCCCGATGTACGCGCGCGTGGATGAAGACCAGCCCTTCCCGGCTGTGCCGAAATGGTCCATCAAAAAATGGCTTTCGCTACCTGGAGAGACGCGCCCGCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGTCTTGGCGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCGTTTACAGGGCGGCTTCGTCTGGGACTGGGTGGATCAGTCGCTGATTAAATATGATGAAAACGGCAACCCGTGGTCGGCTTACGGCGGTGATTTTGGCGATACGCCGAACGATCGCCAGTTCTGTATGAACGGTCTGGTCTTTGCCGACCGCACGCCGCATCCAGCGCTGACGGAAGCAAAACACCAGCAGCAGTTTTTCCAGTTCCGTTTATCCGGGCAAACCATCGAAGTGACCAGCGAATACCTGTTCCGTCATAGCGATAACGAGCTCCTGCACTGGATGGTGGCGCTGGATGGTAAGCCGCTGGCAAGCGGTGAAGTGCCTCTGGATGTCGCTCCACAAGGTAAACAGTTGATTGAACTGCCTGAACTACCGCAGCCGGAGAGCGCCGGGCAACTCTGGCTCACAGTACGCGTAGTGCAACCGAACGCGACCGCATGGTCAGAAGCCGGGCACATCAGCGCCTGGCAGCAGTGGCGTCTGGCGGAAAACCTCAGTGTGACGCTCCCCGCCGCGTCCCACGCCATCCCGCATCTGACCACCAGCGAAATGGATTTTTGCATCGAGCTGGGTAATAAGCGTTGGCAATTTAACCGCCAGTCAGGCTTTCTTTCACAGATGTGGATTGGCGATAAAAAACAACTGCTGACGCCGCTGCGCGATCAGTTCACCCGTGCACCGCTGGATAACGACATTGGCGTAAGTGAAGCGACCCGCATTGACCCTAACGCCTGGGTCGAACGCTGGAAGGCGGCGGGCCATTACCAGGCCGAAGCAGCGTTGTTGCAGTGCACGGCAGATACACTTGCTGATGCGGTGCTGATTACGACCGCTCACGCGTGGCAGCATCAGGGGAAAACCTTATTTATCAGCCGGAAAACCTACCGGATTGATGGTAGTGGTCAAATGGCGATTACCGTTGATGTTGAAGTGGCGAGCGATACACCGCATCCGGCGCGGATTGGCCTGAACTGCCAGCTGGCGCAGGTAGCAGAGCGGGTAAACTGGCTCGGATTAGGGCCGCAAGAAAACTATCCCGACCGCCTTACTGCCGCCTGTTTTGACCGCTGGGATCTGCCATTGTCAGACATGTATACCCCGTACGTCTTCCCGAGCGAAAACGGTCTGCGCTGCGGGACGCGCGAATTGAATTATGGCCCACACCAGTGGCGCGGCGACTTCCAGTTCAACATCAGCCGCTACAGTCAACAGCAACTGATGGAAACCAGCCATCGCCATCTGCTGCACGCGGAAGAAGGCACATGGCTGAATATCGACGGTTTCCATATGGGGATTGGTGGCGACGACTCCTGGAGCCCGTCAGTATCGGCGGAATTCCAGCTGAGCGCCGGTCGCTACCATTACCAGTTGGTCTGGTGTCAAAAATAA

  23. E. Coli LacZ RNA sequence - 3075 nucleotides AUGACCAUGAUUACGGAUUCACUGGCCGUCGUUUUACAACGUCGUGACUGGGAAAACCCUGGCGUUACCCAACUUAAUCGCCUUGCAGCACAUCCCCCUUUCGCCAGCUGGCGUAAUAGCGAAGAGGCCCGCACCGAUCGCCCUUCCCAACAGUUGCGCAGCCUGAAUGGCGAAUGGCGCUUUGCCUGGUUUCCGGCACCAGAAGCGGUGCCGGAAAGCUGGCUGGAGUGCGAUCUUCCUGAGGCCGAUACUGUCGUCGUCCCCUCAAACUGGCAGAUGCACGGUUACGAUGCGCCCAUCUACACCAACGUGACCUAUCCCAUUACGGUCAAUCCGCCGUUUGUUCCCACGGAGAAUCCGACGGGUUGUUACUCGCUCACAUUUAAUGUUGAUGAAAGCUGGCUACAGGAAGGCCAGACGCGAAUUAUUUUUGAUGGCGUUAACUCGGCGUUUCAUCUGUGGUGCAACGGGCGCUGGGUCGGUUACGGCCAGGACAGUCGUUUGCCGUCUGAAUUUGACCUGAGCGCAUUUUUACGCGCCGGAGAAAACCGCCUCGCGGUGAUGGUGCUGCGCUGGAGUGACGGCAGUUAUCUGGAAGAUCAGGAUAUGUGGCGGAUGAGCGGCAUUUUCCGUGACGUCUCGUUGCUGCAUAAACCGACUACACAAAUCAGCGAUUUCCAUGUUGCCACUCGCUUUAAUGAUGAUUUCAGCCGCGCUGUACUGGAGGCUGAAGUUCAGAUGUGCGGCGAGUUGCGUGACUACCUACGGGUAACAGUUUCUUUAUGGCAGGGUGAAACGCAGGUCGCCAGCGGCACCGCGCCUUUCGGCGGUGAAAUUAUCGAUGAGCGUGGUGGUUAUGCCGAUCGCGUCACACUACGUCUGAACGUCGAAAACCCGAAACUGUGGAGCGCCGAAAUCCCGAAUCUCUAUCGUGCGGUGGUUGAACUGCACACCGCCGACGGCACGCUGAUUGAAGCAGAAGCCUGCGAUGUCGGUUUCCGCGAGGUGCGGAUUGAAAAUGGUCUGCUGCUGCUGAACGGCAAGCCGUUGCUGAUUCGAGGCGUUAACCGUCACGAGCAUCAUCCUCUGCAUGGUCAGGUCAUGGAUGAGCAGACGAUGGUGCAGGAUAUCCUGCUGAUGAAGCAGAACAACUUUAACGCCGUGCGCUGUUCGCAUUAUCCGAACCAUCCGCUGUGGUACACGCUGUGCGACCGCUACGGCCUGUAUGUGGUGGAUGAAGCCAAUAUUGAAACCCACGGCAUGGUGCCAAUGAAUCGUCUGACCGAUGAUCCGCGCUGGCUACCGGCGAUGAGCGAACGCGUAACGCGAAUGGUGCAGCGCGAUCGUAAUCACCCGAGUGUGAUCAUCUGGUCGCUGGGGAAUGAAUCAGGCCACGGCGCUAAUCACGACGCGCUGUAUCGCUGGAUCAAAUCUGUCGAUCCUUCCCGCCCGGUGCAGUAUGAAGGCGGCGGAGCCGACACCACGGCCACCGAUAUUAUUUGCCCGAUGUACGCGCGCGUGGAUGAAGACCAGCCCUUCCCGGCUGUGCCGAAAUGGUCCAUCAAAAAAUGGCUUUCGCUACCUGGAGAGACGCGCCCGCUGAUCCUUUGCGAAUACGCCCACGCGAUGGGUAACAGUCUUGGCGGUUUCGCUAAAUACUGGCAGGCGUUUCGUCAGUAUCCCCGUUUACAGGGCGGCUUCGUCUGGGACUGGGUGGAUCAGUCGCUGAUUAAAUAUGAUGAAAACGGCAACCCGUGGUCGGCUUACGGCGGUGAUUUUGGCGAUACGCCGAACGAUCGCCAGUUCUGUAUGAACGGUCUGGUCUUUGCCGACCGCACGCCGCAUCCAGCGCUGACGGAAGCAAAACACCAGCAGCAGUUUUUCCAGUUCCGUUUAUCCGGGCAAACCAUCGAAGUGACCAGCGAAUACCUGUUCCGUCAUAGCGAUAACGAGCUCCUGCACUGGAUGGUGGCGCUGGAUGGUAAGCCGCUGGCAAGCGGUGAAGUGCCUCUGGAUGUCGCUCCACAAGGUAAACAGUUGAUUGAACUGCCUGAACUACCGCAGCCGGAGAGCGCCGGGCAACUCUGGCUCACAGUACGCGUAGUGCAACCGAACGCGACCGCAUGGUCAGAAGCCGGGCACAUCAGCGCCUGGCAGCAGUGGCGUCUGGCGGAAAACCUCAGUGUGACGCUCCCCGCCGCGUCCCACGCCAUCCCGCAUCUGACCACCAGCGAAAUGGAUUUUUGCAUCGAGCUGGGUAAUAAGCGUUGGCAAUUUAACCGCCAGUCAGGCUUUCUUUCACAGAUGUGGAUUGGCGAUAAAAAACAACUGCUGACGCCGCUGCGCGAUCAGUUCACCCGUGCACCGCUGGAUAACGACAUUGGCGUAAGUGAAGCGACCCGCAUUGACCCUAACGCCUGGGUCGAACGCUGGAAGGCGGCGGGCCAUUACCAGGCCGAAGCAGCGUUGUUGCAGUGCACGGCAGAUACACUUGCUGAUGCGGUGCUGAUUACGACCGCUCACGCGUGGCAGCAUCAGGGGAAAACCUUAUUUAUCAGCCGGAAAACCUACCGGAUUGAUGGUAGUGGUCAAAUGGCGAUUACCGUUGAUGUUGAAGUGGCGAGCGAUACACCGCAUCCGGCGCGGAUUGGCCUGAACUGCCAGCUGGCGCAGGUAGCAGAGCGGGUAAACUGGCUCGGAUUAGGGCCGCAAGAAAACUAUCCCGACCGCCUUACUGCCGCCUGUUUUGACCGCUGGGAUCUGCCAUUGUCAGACAUGUAUACCCCGUACGUCUUCCCGAGCGAAAACGGUCUGCGCUGCGGGACGCGCGAAUUGAAUUAUGGCCCACACCAGUGGCGCGGCGACUUCCAGUUCAACAUCAGCCGCUACAGUCAACAGCAACUGAUGGAAACCAGCCAUCGCCAUCUGCUGCACGCGGAAGAAGGCACAUGGCUGAAUAUCGACGGUUUCCAUAUGGGGAUUGGUGGCGACGACUCCUGGAGCCCGUCAGUAUCGGCGGAAUUCCAGCUGAGCGCCGGUCGCUACCAUUACCAGUUGGUCUGGUGUCAAAAAUAA

  24. E. Coli LacZ protein sequence – 1024 amino acids MTMITDSLAVVLQRRDWENPGVTQLNRLAAHPPFASWRNSEEARTDRPSQQLRSLNGEWRFAWFPAPEAVPESWLECDLPEADTVVVPSNWQMHGYDAPIYTNVTYPITVNPPFVPTENPTGCYSLTFNVDESWLQEGQTRIIFDGVNSAFHLWCNGRWVGYGQDSRLPSEFDLSAFLRAGENRLAVMVLRWSDGSYLEDQDMWRMSGIFRDVSLLHKPTTQISDFHVATRFNDDFSRAVLEAEVQMCGELRDYLRVTVSLWQGETQVASGTAPFGGEIIDERGGYADRVTLRLNVENPKLWSAEIPNLYRAVVELHTADGTLIEAEACDVGFREVRIENGLLLLNGKPLLIRGVNRHEHHPLHGQVMDEQTMVQDILLMKQNNFNAVRCSHYPNHPLWYTLCDRYGLYVVDEANIETHGMVPMNRLTDDPRWLPAMSERVTRMVQRDRNHPSVIIWSLGNESGHGANHDALYRWIKSVDPSRPVQYEGGGADTTATDIICPMYARVDEDQPFPAVPKWSIKKWLSLPGETRPLILCEYAHAMGNSLGGFAKYWQAFRQYPRLQGGFVWDWVDQSLIKYDENGNPWSAYGGDFGDTPNDRQFCMNGLVFADRTPHPALTEAKHQQQFFQFRLSGQTIEVTSEYLFRHSDNELLHWMVALDGKPLASGEVPLDVAPQGKQLIELPELPQPESAGQLWLTVRVVQPNATAWSEAGHISAWQQWRLAENLSVTLPAASHAIPHLTTSEMDFCIELGNKRWQFNRQSGFLSQMWIGDKKQLLTPLRDQFTRAPLDNDIGVSEATRIDPNAWVERWKAAGHYQAEAALLQCTADTLADAVLITTAHAWQHQGKTLFISRKTYRIDGSGQMAITVDVEVASDTPHPARIGLNCQLAQVAERVNWLGLGPQENYPDRLTAACFDRWDLPLSDMYTPYVFPSENGLRCGTRELNYGPHQWRGDFQFNISRYSQQQLMETSHRHLLHAEEGTWLNIDGFHMGIGGDDSWSPSVSAEFQLSAGRYHYQLVWCQK

  25. Fig. 17-5 Second mRNA base First mRNA base (5 end of codon) Third mRNA base (3 end of codon)

  26. LacZ (Beta-galactosidase) gene (DNA) Beta-galactosidase protein (E. coli) LacZ mRNA

  27. E. Coli Sliding Clamp DNA sequence (1 strand shown)- 1101 base pairs ATGAAATTTACCGTAGAACGTGAGCATTTATTAAAACCGCTACAACAGGTGAGCGGTCCGTTAGGTGGTCGTCCTACGCTACCGATTCTCGGTAATCTGCTGTTACAGGTTGCTGACGGTACGTTGTCGCTGACCGGTACTGATCTCGAGATGGAAATGGTGGCACGTGTTGCGCTGGTTCAGCCACACGAGCCAGGAGCGACGACCGTTCCGGCGCGCAAATTCTTTGATATCTGCCGTGGTCTGCCTGAAGGCGCGGAAATTGCCGTGCAGCTGGAAGGTGAACGGATGCTGGTACGCTCCGGGCGTAGCCGTTTTTCGCTGTCTACCCTGCCAGCGGCGGATTTCCCGAACCTCGATGACTGGCAGAGTGAAGTCGAATTTACCCTGCCGCAGGCAACGATGAAGCGTCTGATTGAAGCGACCCAGTTTTCTATGGCGCATCAGGACGTTCGCTATTACTTAAATGGTATGCTGTTTGAAACCGAAGGTGAAGAACTGCGCACCGTGGCAACCGACGGCCACCGTCTGGCGGTCTGTTCAATGCCAATTGGTCAATCTTTGCCAAGCCATTCGGTGATCGTACCGCGTAAAGGCGTGATTGAACTGATGCGTATGCTCGACGGCGGCGACAATCCGCTGCGCGTACAGATTGGCAGCAACAACATTCGCGCCCACGTTGGCGACTTTATCTTCACCTCCAAACTGGTGGATGGTCGCTTCCCGGATTATCGCCGCGTTCTGCCGAAGAACCCGGACAAACATCTGGAAGCTGGCTGCGATCTGCTCAAGCAGGCGTTTGCTCGCGCGGCGATTCTCTCTAACGAGAAATTCCGCGGCGTACGTCTTTATGTCAGCGAAAACCAGCTGAAAATCACCGCCAACAACCCGGAACAGGAAGAAGCGGAAGAGATCCTCGACGTTACCTATAGCGGTGCGGAGATGGAAATCGGCTTCAACGTCAGTTATGTGCTGGATGTTCTGAACGCGCTGAAATGCGAAAACGTCCGCATGATGCTGACCGATTCGGTTTCCAGCGTGCAGATTGAAGATGCGGCCAGCCAGAGCGCGGCTTATGTTGTCATGCCAATGAGACTGTAA E. Coli Sliding Clamp Protein sequence- 366 amino acids MKFTVEREHLLKPLQQVSGPLGGRPTLPILGNLLLQVADGTLSLTGTDLEMEMVARVALVQPHEPGATTVPARKFFDICRGLPEGAEIAVQLEGERMLVRSGRSRFSLSTLPAADFPNLDDWQSEVEFTLPQATMKRLIEATQFSMAHQDVRYYLNGMLFETEGEELRTVATDGHRLAVCSMPIGQSLPSHSVIVPRKGVIELMRMLDGGDNPLRVQIGSNNIRAHVGDFIFTSKLVDGRFPDYRRVLPKNPDKHLEAGCDLLKQAFARAAILSNEKFRGVRLYVSENQLKITANNPEQEEAEEILDVTYSGAEMEIGFNVSYVLDVLNALKCENVRMMLTDSVSSVQIEDAASQSAAYVVMPMRL

  28. Origin of replication 3 5 RNA primer 5 Fig. 16-15b “Sliding clamp” 3 5 DNA pol III Parental DNA 3 5 5 3 5

  29. Sliding clamp protein (E. coli)- shown with DNA double helix

  30. Gene 2 DNA molecule Gene 1 Gene 3 Fig. 17-4 DNA template strand TRANSCRIPTION mRNA Codon TRANSLATION Protein Amino acid

  31. Sugars Fig. 5-27c-2 Deoxyribose (in DNA) Ribose (in RNA) (c) Nucleoside components: sugars

  32. Nitrogenous bases Pyrimidines Fig. 5-27c-1 Cytosine (C) Thymine (T, in DNA) Uracil (U, in RNA) Purines Adenine (A) Guanine (G) (c) Nucleoside components: nitrogenous bases

  33. Fig. 16-5 Nitrogenous bases Sugar–phosphate backbone 5 end Chemical structure of DNA Thymine (T) Adenine (A) Cytosine (C) DNA nucleotide Phosphate Sugar (deoxyribose) 3 end Guanine (G)

  34. Fig. 16-5 Nitrogenous bases Sugar–phosphate backbone 5 end Chemical structure of RNA -ribose instead of deoxyribose Uracilinstead of thymine OH OH OH OH Thymine (T) Uracil (U) Cytosine (C) Adenine (A) Cytosine (C) RNA DNA nucleotide Phosphate Sugar (deoxyribose) 3 end Guanine (G)

  35. DNA Protein RNA Replication Transcription Translation Polymerase DNA Pol III (and I) dNTPs Monomers Template ssDNA Direction of synthesis 5’ to 3’ polynucleotide Product

  36. DNA Protein RNA Replication Transcription Translation Polymerase DNA Pol III (and I) RNA Pol dNTPs NTPs Monomers ssDNA Template ssDNA 5’ to 3’ Direction of synthesis 5’ to 3’ polynucleotide polynucleotide Product

  37. Promoter Transcription unit 5 3 3 5 DNA Start point RNA polymerase Fig. 17-7a-1

  38. Promoter Transcription unit 5 3 3 5 DNA Start point RNA polymerase Initiation 1 5 3 Fig. 17-7a-2 3 5 Template strand of DNA RNA transcript Unwound DNA

  39. Promoter Transcription unit 5 3 3 5 DNA Start point RNA polymerase Initiation 1 5 3 Fig. 17-7a-3 3 5 Template strand of DNA RNA transcript Unwound DNA Elongation 2 Rewound DNA 5 3 3 3 5 5 RNA transcript

  40. Promoter Transcription unit 5 3 3 5 DNA Start point RNA polymerase Initiation 1 5 3 Fig. 17-7a-4 3 5 Template strand of DNA RNA transcript Unwound DNA Elongation 2 Rewound DNA 5 3 3 3 5 5 RNA transcript Termination 3 5 3 3 5 3 5 Completed RNA transcript

  41. Fig. 17-7b Nontemplate strand of DNA Elongation RNA nucleotides RNA polymerase 3' 3' end 5' Direction of transcription (“downstream”) 5' Template strand of DNA Newly made RNA

  42. A eukaryotic promoter includes a TATA box 1 Promoter Template 5 3 3 5 TATA box Template DNA strand Start point Several transcription factors must bind to the DNA before RNA polymerase II can do so. 2 Fig. 17-8 Transcription factors 5 3 3 5 Additional transcription factors bind to the DNA along with RNA polymerase II, forming the transcription initiation complex. 3 RNA polymerase II Transcription factors 3 5 5 5 3 RNA transcript Transcription initiation complex

  43. DNA Protein RNA Replication Transcription Translation Polymerase DNA Pol III (and I) RNA Pol dNTPs NTPs Monomers ssDNA Template ssDNA 5’ to 3’ Direction of synthesis 5’ to 3’ polynucleotide polynucleotide Product

More Related