50 likes | 191 Views
R. (. s. ). Kuo-95 (p.470). 5. Root-Locus Technique . Curves of eigenvalues in the s-plane depending on K. Example 5.1. n1=[1,3];a1=conv([1,5,0],[1,6]); a2=[1,2,2];p=roots(a2) d1=conv(a1,a2) rlocus(n1,d1). Roots: D 1 (s)=0. Zeros: N 1 (s)=0. 5 parts ( D 1 (s) 5. order).
E N D
R ( s ) Kuo-95 (p.470) 5. Root-Locus Technique Curves of eigenvalues in the s-plane depending on K Example 5.1 n1=[1,3];a1=conv([1,5,0],[1,6]); a2=[1,2,2];p=roots(a2) d1=conv(a1,a2) rlocus(n1,d1) Roots: D1(s)=0 Zeros: N1(s)=0 5 parts ( D1(s) 5. order) Symmetricalwith respect to real axis
Intersect of the asymptotes: Routh tabulation (Example 3.1) k=35; a=polyadd(d1,k*n1);p=roots(a) Breakaway points: n1d=[1];d1d=[5,4*13,3*54,2*82,60]; a=polyadd(conv(n1d,d1),-conv(d1d,n1));roots(a)
ksi=0.6;wn=2;sg=-ksi*wn;w=wn*sqrt(1-ksi^2); hold on;plot([0,sg],[0,w]);hold off;rlocfind(n1,d1)