1 / 10

Vectors – what are they?

Vectors – what are they?. Vectors describe movements i, j and k represent movement in the x,y and z directions. Vectors – How to calculate. To calculate vector BA, subtract: BA = a - b. A. B. O. Vectors - resultants.

norton
Download Presentation

Vectors – what are they?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Vectors – what are they? • Vectors describe movements • i, j and k represent movement in the x,y and z directions Maths revision course by Miriam Hanks

  2. Vectors – How to calculate To calculate vector BA, subtract: BA = a - b A B O Maths revision course by Miriam Hanks

  3. Vectors - resultants To find the resultant, add the components of the vectors together resultant Maths revision course by Miriam Hanks

  4. Vectors - magnitude The magnitude of a vector is its length. The notation for this is vertical lines: eg |a| or |PQ| To find the magnitude of a vector, use Pythagoras or the distance formula. Maths revision course by Miriam Hanks

  5. Vectors - Collinearity • To show that 3 points are in a straight line (ie collinear): • Work out 2 vectors and show that one is a multiple of the other • Show that the vectors have a common point Maths revision course by Miriam Hanks

  6. Vectors in real life Sat navs work out their position from satellites in the sky, but then use vectors to decide on a route. Maths revision course by Miriam Hanks

  7. Vectors – Dot product • There are 2 formulae for the dot product on the • formula sheet: • dot product = x1x2 + y1 y2 +z1z2 • where x,y,z are the components of each vector. • dot product = a bcos • where a is the magnitude of vector a (use Pythagoras for this) • Note these 2 formulae equal each other, so: • a bcos = x1x2 + y1 y2 +z1z2 Maths revision course by Miriam Hanks

  8. Dot product of vectors at 90o The dot product of 2 vectors at 90o is zero and vice versa Why? Maths revision course by Miriam Hanks

  9. Dot product of a vector with itself • The dot product of vector a with itself is: • a2 • Why? Maths revision course by Miriam Hanks

  10. The dot product in real life • When is the dot product used in real life? • Computer games programmers use the dot product to find the angle between 2 characters, so they know whether they are facing each other. Maths revision course by Miriam Hanks

More Related