1 / 18

Proteins

Proteins. Structure, Formation & Digestion. Proteins are large, important and complex molecules (polymers) found in our bodies They are involved in most reactions in cells. Each protein within the body has a specific function.

nowlin
Download Presentation

Proteins

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Proteins Structure, Formation & Digestion

  2. Proteins are large, important and complex molecules (polymers) found in our bodies • They are involved in most reactions in cells.

  3. Each protein within the body has a specific function. • The main functions of proteins in the body are structural, maintenance and regulation of life processes.

  4. Proteins which fulfil different roles in the body are formed by linking differing sequences of amino acids together. • Proteins can be classified as fibrous or globular • this structure is driven by hydrogen bonding within the protein molecule.

  5. Fibrous Animal tissue Skin, hair, nails Muscle Globular Maintenance and regulation of life processes Enzyme (amylase) Hormones (insulin) Transport (Haemoglobin) Antibodies (immune system)

  6. Proteins which are enzymes • An enzyme is a protein which is able to catalyse a biochemical reaction

  7. The shape of the active site allows specific reactants known as substrates to attach, like a lock and key. • Incorrect substrates are unable to fit the shape of the active site and are not changed.

  8. Amino acids • Proteins are constructed from building blocks called amino acids. • Amino acid molecules have two functional groups • carboxyl group (-COOH) • amino group (-NH2)

  9. essential amino acids • The body cannot make all the amino acids required for body proteins and is dependent on dietary protein for supply of certain amino acids known as essential amino acids.

  10. These proteins are specific to the body’s needs and are built up within the body by many condensation reactions of various amino acids.

  11. Condensation Reactions • Here,the amino group on one amino acid and the carboxyl group on a neighbouring amino acid molecule join together, with the elimination of water.

  12. Amide (peptide) link Amide Links (Peptide Links) • The link which forms between the two amino acids is called an amide link (CONH) (also known as a peptide link).

  13. Digestion of proteins • Proteins obtained by eating plants or animals are broken up during digestion by a process called hydrolysis to produce amino acids.

  14. You can work out the structural formulae of the amino acids obtained from hydrolysis by looking at the structure of a section of the protein. • Example 1 Work out the structures of the 3 amino acids which would be obtained from hydrolysis of the following Tri - peptide molecule

  15. Lab analysis: chromatography • Hydrolyse the protein using acid or alkali and then use chromatography • Using known amino acids alongside the hydrolysed protein allows identification of the amino acids in the protein.

  16. A, B, C, D and E - five known amino acids. • P - hydrolysed protein. • P contains four amino acids because 4 spots are present.

  17. The hydrolysed protein also contains another unknown amino acid. • This can be identified by running another chromatogram with different known samples of pure amino acids.

More Related