1 / 59

Multi-Dimensional Data Visualization

Explore cutting-edge techniques in multi-dimensional data visualization including glyphs, star plots, parallel coordinates, and more. Learn how to represent n-D data effectively and analyze complex relationships within large datasets using various visualization methods.

nvanwyk
Download Presentation

Multi-Dimensional Data Visualization

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Multi-Dimensional Data Visualization

  2. Information Types • Multi-dimensional: databases,… • 1D: timelines,… • 2D: maps,… • 3D: volumes,… • Hierarchies/Trees: directories,… • Networks/Graphs: web, communications,… • Document collections: digital libraries,…

  3. The Simple Stuff • Univariate • Bivariate • Trivariate

  4. Univariate • Dot plot • Bar chart (item vs. attribute) • Tukey box plot • Histogram

  5. Bivariate • Scatterplot

  6. Trivariate • 3D scatterplot, spin plot • 2D plot + size (or color…)

  7. Multi-Dimensional Data • Each attribute defines a dimension • Small # of dimensions easy • What about many dimensional data? n-D What does 10-D space look like?

  8. Projection • map n-D space onto 2-D screen

  9. Glyphs: Chernoff Faces • 10 Parameters: • Head Eccentricity • Eye Eccentricity • Pupil Size • Eyebrow Slope • Nose Size • Mouth Vertical Offset • Eye Spacing • Eye Size • Mouth Width • Mouth Openness • http://hesketh.com/schampeo/projects/Faces/chernoff.html

  10. Glyphs: Stars d1 d2 d7 d3 d6 d4 d5

  11. Multiple Views withBrushing-and-linking

  12. Scatterplot Matrix • All pairs of attributes • Brushing and linking • http://noppa5.pc.helsinki.fi/koe/3d3.html

  13. … on steroids

  14. Different Arrangements of Axes • Axes are good • Lays out all points in a single space • “position” is 1st in Cleveland’s rules • Uniform treatment of dimensions • Space > 3D ? • Must trash orthogonality

  15. Parallel Coordinates • Inselberg, “Multidimensional detective” (parallel coordinates)

  16. Parallel Coordinates • Bag cartesian • (0,1,-1,2)= x y z w 0 0 0 0

  17. Star Plot 1 8 2 7 3 4 6 5 Parallel Coordinates with axes arranged radially

  18. Star Coordinates • Kandogan, “Star Coordinates”

  19. Star Coordinates CartesianStar Coordinates P=(v1,v2,v3,v4,v5,v6,v7,v8) P=(v1, v2) d1 d1 d8 d2 v3 v4 p v2 v1 v5 v2 d7 d3 d2 p v1 v8 v6 v7 d6 • Mapping: • Items → dots • Σ attribute vectors → (x,y) d4 d5

  20. Analysis

  21. Table Lens • Rao, “Table Lens”

  22. FOCUS / InfoZoom • Spenke, “FOCUS”

  23. VisDB • Keim, “VisDB”

  24. Pixel Bar Charts • Keim

  25. Comparison of Techniques

  26. Comparison of Techniques • ParCood: <1000 items, <20 attrs • Relate between adjacent attr pairs • StarCoord: <1,000,000 items, <20 attrs • Interaction intensive • TableLens: similar to par-coords • more items with aggregation • Relate 1:m attrs (sorting), short learn time • Visdb: 100,000 items with 10 attrs • Items*attrs = screenspace, long learn time, must query • Spotfire: <1,000,000 items, <10 attrs (DQ many) • Filtering, short learn time

  27. Multi-DimensionalFunctions

  28. Multi-Dimensional Functions • y = f(x1, x2, x3, …, xn) • Continuous: • E.g. y = x13 + 2x22 - 9x3 • Discrete: • xi are uniformly sampled in a bounded region • E.g. xi = [0,1,2,…,100] • E.g. measured density in a 3D material under range of pressures and room temperatures.

  29. Relations vs. Functions • Relations: • R(A, B, C, D, E, F) • All dependent variables (1 ind.var.?) • Sparse points in multi-d dep.var. space • Functions: • R(A, B, C, D, E, F, Y) : Y=f(A, B, C, D, E, F) • Many independent variables • Defined at every point in multi-d ind.var. space (“onto”) • Huge scale: 6D with 10 samples/D = 1,000,000 data points

  30. Multi-D Relation Visualizations… • Don’t work well for multi-D functions • Example: • Parallel coords • 5D func sampled on 1-9 for all ind.vars.

  31. Typically want to encode ind.vars. as spatial attrs

  32. 1-D: Easy • b = f(a) • a  x • b  y b a

  33. 2-D: Easy • c = f(a, b) • Height field: • a  x • b  y • c  z c b a

  34. 2-D: Easy • c = f(a, b) • Heat map: • a  x • b  y • c  color b a c

  35. 3-D: Hard • d = f(a, b, c) • Color volume: • a  x • b  y • c  z • d  color • What’s inside? c b a

  36. 4D: Really Hard • y = f(x1, x2, x3, x4, …, xn) • What does a 5D space look like? • Approaches: • Hierarchical axes (Mihalisin) • Nested coordinate frames (Worlds within Worlds) • Slicing (HyperSlice) • Radial Focus+Context (PolarEyez, Sanjini)

  37. Hierarchical Axes • 1D view of 3D function: (Mihalisin et al.) f(x1, x2, x3) x3 x2 x1

  38. as in TableLens 5D 9 samp/D

  39. Hierarchical Axes • 2D view of 4D function (using heat maps) • y = f(x1, x2, x3, x4) • Discrete: xi = [0,1,2,3,4] x3 x1 x2 y = f(x1,x2,0,0) as color x4

  40. Hierarchical Axes • Scale? • 6d = 3 levels in the 2d approach • 10 samples/d = 1,000,000 data points = 1 screen • For more dimensions: • zoom in on “blocks” • reorder dimensions

  41. 5D9 sample/D

  42. Nested Coordinate Frames • Feiner, “Worlds within Worlds”

  43. Slicing • Van Wijk, “HyperSlice”

  44. Radial Focus+Context • Jayaraman, “PolarEyez” • infovis.cs.vt.edu x3 x4 x2 x1 x5 -x5 -x1 -x4 -x2

  45. Comparison • Hierarchical axes (Mihalisin): • Nested coordinate frames (Worlds in Worlds) • Slicing (HyperSlice): • Radial Focus+Context (PolarEyez)

  46. Comparison • Hierarchical axes (Mihalisin): • < 6d by 10 samples, ALL slices, view 2d at a time • Nested coordinate frames (Worlds in Worlds) • < 5-8d, continuous, no overview, 3d hardware • Slicing (HyperSlice): • < 10d by 100 samples, 2d slices • Radial Focus+Context (PolarEyez) • < 10d by 1000 samples, overview, all D uniform, rays

  47. Dynamic Queries

  48. HomeFinder

  49. Spotfire

More Related