1 / 52

C-H Functionalization: Recent Applications

C-H Functionalization: Recent Applications. Jean-Francois Vincent- Rocan Department of Chemistry University of Ottawa. Organic and Biological Chemistry Graduate seminar April 12, 2012. Books and Reviews. C-H Functionalization in SciFinder. -Constant growth in the past 30 years

obert
Download Presentation

C-H Functionalization: Recent Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. C-H Functionalization: Recent Applications Jean-Francois Vincent-Rocan Department of Chemistry University of Ottawa Organic and Biological Chemistry Graduate seminar April 12, 2012

  2. Books and Reviews

  3. C-H Functionalization in SciFinder -Constant growth in the past 30 years -Explosion in the last 5 years -Focus on recent applications (not a comprehensive review)

  4. Activation vs Functionalization • C-H bond activation: Cleavage of C-H bond that leads to the formation of a metal-C bond either through oxidative addition to a low valent metal center or electrophilic substitution • C-H bond functionalization: Cleavage of C-H bond that is followed by new bond formation at the carbon center Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 57, 2879-2932 Kaikuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077-1101

  5. Outline • Part 1: Factors of selectivity • Inductive effects • Hyperconjugation • Steric factors • Strain release • Directed oxidations • Part 2: Recent applications • Mimicking nature • Increasing molecular complexity • Cross-Coupling • Divergent functionalization in drug discovery

  6. Part 1Factors of selectivity

  7. C-H Oxidation Mechanism using Dioxiranes Curci Acc. Chem. Res. 2006, 39, 1

  8. Bond Strengths -Stronger bonds are formed -Most electron rich C-H is the easiest to break

  9. -The most electron rich position is oxidized for non-metal insertions -Typical reactivity trend is tertiary> secondary> primary Inductive Effects -Secondary positions are less sterically hindered Selectivity can be tuned by reagent selection (polyoxometalates) Asensio, G.; Castellano, G.; Mello,R.; Gonzalez-Nunez, M. E. J. Org. Chem. 1996, 61, 5564−5566 Kamata,K.; Yonehara,K.; Nakagawa, Y.; Uehara, K.; Mizuno, N. Nat. Chem. 2010, 2, 478 – 483

  10. Hyperconjugation Effects -Cyclopropane act as activating group (oxidation on the vicinal carbon) -Orbital overlap is required Daccolti, L.; Dinoi,A.; Fusco, C.; Russo, A.; Curci, R. J. Org. Chem. 2003, 68,7806 – 7810 Banwell, M. G.; Haddad, N.; Huglin, J. A.; MacKay, M. F.; Reum, M. E.;Ryan, J. H.; Turner, K. A. J. Chem. Soc. Chem. Commun.1993, 954 – 957 Brinker, U.H.; Lin, G.; Xu, L.; Smith, W. B.; Mieusset, J.-L. J. Org. Chem. 2007, 72, 8434 – 8451.

  11. HyperconjugationEnabled by Heteroatoms -Non-bonding electrons of a heteroatom available for hyperconjugation - Non-bonding electron MUST be available (Delocalization in the aromatic ring in this case) Davies, H. M. L.; Beckwith, R. E. J.; Antoulinakis, E. G.; Jin, Q. J. Org. Chem. 2003, 68, 6126 – 6132. Barton, D. H. R.; Boivin, J.; Gaudin, D.; Jankowski, K. Tetrahedron Lett. 1989,30, 1381 – 1382. Liang, C.; Fabien, C.; Fruit, C.; Mller, P.; Dodd, R. H.; Dauban, P.Angew. ChemInt. Ed. 2006,45, 4641 – 4644.

  12. Steric Factors -Rate reduction for hindered C-H bonds -Hyperconjugation+ steric factors Tenaglia, A.; Terranova, E.; Waegell, B. Tetrahedron Lett. 1989, 30, 5271 – 5274 Davies, H. M. L.; Venkataramani, C. Angew. Chem. Int. Ed. 2002, 41, 2197 – 2199 Gomez, L.; Garcia-Bosch, I.; Company, A.; Benet-Buchholz, J.; Polo, A.; Sala, X.; Ribas, X.; Costas, M.Angew. Chem. Int. Ed. 2009, 48, 5720 – 5723. Davies, H. M. L.; Beckwith, R. E. J.; E. Antoulinakis, G.; Jin, Q. J. Org. Chem. 2003, 68, 6126 – 6132. .

  13. Strain Release • Elimination of 1,3 syndiaxial interaction in the transition state promotes a faster oxidation and an increased site-selectivity (in the example below) • Schreiber and Eschenmoser proposed this idea for the oxidation of axial alcohols (1955) Chen, K.; Eschenmoser, A.; Baran, P.S. Angew. Chem. Int. Ed. 2009,48, 9705 – 9708. Schreiber, J.; Eschenmoser, A.Helv. Chim. Acta 1955, 38, 1529 –1536

  14. Energy diagram

  15. Directed Oxidations -Excellent in the presence of opposing steric and electronic influences -Directing group is overriding the substrate’s preferences Breslow, R.; Corcoran, R. J.; Snider, B. B.; Doll, R. J.; Khanna, P. L.;Kaleya, R. J. Am. Chem. Soc. 1977, 99, 905 – 915 Kasuya, S.; Kamijo, S. ; Inoue, M. Org. Lett. 2009, 11, 3630 – 3632.

  16. How is it Selective ?

  17. Directing Groups Override Substrate Preferences -Directing groups can be employed to reverse the inherent selectivity -Intramolecular delivery is more important than the steric effects of the substrate Chen, K.; Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. 2008,130, 7247 – 7249 Hofmann, A. W.   Ber. Dtsch Chem. Ges. 1879, 12 (1): 984–990 Löffler, K.; Freytag, C. Ber. Dtsch Chem. Ges. 1909,42 (3): 3427–3431

  18. Radical[1,6]-Hydrogen ShiftHLF reaction

  19. Metal Promoted Directed Oxidation Espino, C. G.; When, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc. 2001, 123, 6935 – 6936 Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem. 2006, 4, 4041 – 4047

  20. Directed Pd C-H activation • Insertion via CIPE, to form the new C-Pd bond Chen, X.; Engle, K. M.; Yu, J.-Q. Angew. Chem. Int. Ed., 2009, 48, 5094-5115

  21. Hydrogen Bonding -Competitive ketone formation on the second substrate -H-bonding with TFDO is impossible for the second example Asensio, G.; Gonzlez-Nfflez, M. L.; Bernardini, C. B.; Mello, R.; Adam, W. J. Am. Chem. Soc. 1993, 115, 7250 – 7253

  22. First Part: Conclusion • Inductive effects, hyperconjugation, steric factors and strain release will modulate C-H selectivity • Directed oxidation can be use for selective oxidation of complicated system or to invert the selectivity

  23. Part 2:Recent Applications

  24. Late Stage Hydroxylation • C-H activation can be used to avoid PG-chemistry using late-stage hydroxylation Wender, P. A.; Hilinski, M. K.; Mayweg, A. V. W. Org. Lett.2005, 7, 79– 82 Seto, H.; Fujioka, S.; Koshino, H.; Yoshida, S. ; Tsubuki, M.; Honda, T. Tetrahedron 1999, 55, 8341 – 8352 Curci, R.; Detomaso, A.; Prencipe, T.; Carpenter, G. B.J. Am. Chem. Soc.1994, 116, 8112−8115

  25. Mimicking Nature • Nature usually oxidizes the targeted compound at the end of its biosynthesis • An abundant number of natural products are synthesised in 2 phases : Cyclase phase and Oxidation phase Chen, K.; Baran, P. S.  Nature2009, 459, 824–828

  26. Baran’s Retrosynthetic Analysis for the EudesmaneTerpenes Family Chen, K.; Baran, P. S.  Nature 2009, 459, 824–828

  27. Eudesmanes Synthesis: Cyclase Phase Chen, K.; Baran, P. S.  Nature2009, 459, 824–828

  28. Eudesmanes synthesis: Oxidation phase Chen, K.; Baran, P. S.  Nature2009, 459, 824–828 .

  29. Eudesmanes synthesis: Oxidation phase Chen, K.; Baran, P. S.  Nature2009, 459, 824–828 .

  30. C-H functionalization • Aliphatic C-H (inherent preference, Directed oxidation)

  31. The White Group • Major player in the allylic C-H functionalization field • Known for her Palladium(II) \ sulfoxide catalyst system for allylic oxidation • π-allyl complex followed by functionaliztion Chen, M.S.; White, M.C. J. Am. Chem. Soc2004, 126, 1346-1347 Fraunhoffer, K.J.; White, M.C.J. Am. Chem. Soc2007, 129, 7274-7276 Reed, S. A.; Mazzotti, A. R.; White, M. C. J. Am. Chem.Soc. 2009, 131,11701-11706 Young, A. J.; White, M. C. Angew. Chem., Int. Ed. 2011, 50, 6824-6827

  32. Increasing Molecular Complexity -Stang and White developed that method to take fairly simple S.M and converted it to reactive intermediate Stang, E. M.; White, M. C. J. Am. Chem. Soc.2011, 133, 14892-14895

  33. Optimization Stang, E. M.; White, M. C. J. Am. Chem. Soc.2011, 133, 14892-14895

  34. Reaction Scope Stang, E. M.; White, M. C. J. Am. Chem. Soc.2011, 133, 14892-14895

  35. Application in synthesis Stang, E. M.; White, M. C. J. Am. Chem. Soc.2011, 133, 14892-14895

  36. C-H functionalization • Aliphatic C-H (inherent preference, Directed oxidation) • Allylic C-H (Directed, allyl activation)

  37. Cross-Coupling reactions • Reaction using organohalides and pseudohalides and other functional groups • The reactive intermediate is the corresponding aryl and alkyl palladium(II) species. • The quickest and easiest sequences to prepare such intermediates would certainly improve these reactions • Unlimited opportunities for the use of unactivated carbon–hydrogen (C-H) bond Chen, X.; Engle, K. M.; Yu, J.-Q. Angew. Chem. Int. Ed., 2009, 48, 5094-5115

  38. Cross-Coupling Featuring C-H Functionalization Lafrance, M.; Fagnou, K. J. Am. Chem. Soc.2006, 128,16496-16497 Giry, R.; Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.; Yu, J. Q. J. Am. Chem. Soc.2007, 129, 3510– 3511 Satoh, T.; Kawamura, Y.; Miura, M.; Nomura , M. Angew. Chem. Int. Ed. Engl. 1997, 36, 1740 Kamer, P. C. J.; de Vries, J. G.;Van Leeuwen , P.W. N. M .J. Am. Chem. Soc. 2002, 124, 1586

  39. Concerted MetalationDeprotonation Lafrance, M.; Fagnou, K. J. Am. Chem. Soc.2006, 128, 16496-16497

  40. Oxidative Heck Cross-Coupling Beck, E. M.; Grimster, N. P.; Hatley, R. ; Gaunt, M. J. J. Am. Chem. Soc. 2006, 128, 2528

  41. Application in Total Synthesis Beck, E. M.; Hatley, R.; Gaunt, M. J. Angew. Chem., Int. Ed. 2008, 47, 3004-3007

  42. Late-Stage Functionalization • 9 membered ring • Late stage functionalization • Functional group ‘’tolerance’’ Bowie, A. L.; Hughes, C. C.; Trauner, D. Org. Lett.2005, 7, 5207-5209

  43. Cross-coupling featuring C-H functionalization Lafrance, M.; Fagnou, K. J. Am. Chem. Soc.2006, 128,16496-16497 Giry, R.; Maugel, N.; Li, J. J.; Wang, D. H.; Breazzano, S. P.; Saunders, L. B.; Yu, J. Q. J. Am. Chem. Soc.2007, 129, 3510– 3511 Satoh, T.; Kawamura, Y.; Miura, M.; Nomura , M. Angew. Chem. Int. Ed. Engl. 1997, 36, 1740 Kamer, P. C. J.; de Vries, J. G.;Van Leeuwen , P.W. N. M .J. Am. Chem. Soc. 2002, 124, 1586

  44. Directing group For a good review :Chen, X.; Engle, K. M.; Yu, J.-Q. Angew. Chem. Int. Ed., 2009, 48, 5094-5115

  45. Drug Discovery • Sulfonamide is an organic moiety present in many drugs • Has been found to direct C-H functionalization Dai, H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc.2011, 133, 7222-7228

  46. Divergent Functionalization Dai, H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc.2011, 133, 7222-7228

  47. Drug Analogues Dai, H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc.2011, 133, 7222-7228

  48. C-H functionalization • Aromatic C-H (inherent preference, protecting group orientation, directing group)

  49. Conclusion • 4 factors have been identified to modulate C-H functionalization selectivity (inductive effects, hyperconjugation, steric factors, strain release) • Directed oxidations can overcome the substrate’s preferences • C-H functionalization can be used easily in total synthesis of complex and drug-like molecules

  50. What Is Next ? Mendoza, A.; Ishihara, Y.; Baran, P.S. Nature Chem. 2012, 4, 21-25.

More Related