1 / 12

Tema 12 * 3º ESO

Tema 12 * 3º ESO. FUNCIONES. Tema 12.7 * 3º ESO. FUNCIÓN AFÍN. FUNCIÓN AFÍN. Las funciones de la forma: y = m.x + n Son funciones lineales y como tales se representan por una recta, pero con la salvedad de que no pasa por el origen (0, 0).

odele
Download Presentation

Tema 12 * 3º ESO

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Tema 12 * 3º ESO FUNCIONES Apuntes de Matemáticas 3º ESO

  2. Tema 12.7 * 3º ESO FUNCIÓN AFÍN Apuntes de Matemáticas 3º ESO

  3. FUNCIÓN AFÍN • Las funciones de la forma: y = m.x + n • Son funciones lineales y como tales se representan por una recta, pero con la salvedad de que no pasa por el origen (0, 0). • Se llaman funciones afines y m es la pendiente. • El valor de la ordenada para x=0 es n y se llama ordenada en el origen. • EJEMPLO DE FUNCIÓN AFÍN: • Al comprar una moto tenemos que dar una entrada de 100 € y luego pagar 50 € cada mes. Determinar la cantidad abonada en cualquier momento. • RESOLUCIÓN: • Si llevo x meses pagando la moto, habré abonado por ella: • 100+50.x  y = 50.x + 100 • Vemos que la pendiente, m, es 50 y la ordenada en el origen es 100. • Si no fuera por los 100 € de entrada sería una función lineal. Apuntes de Matemáticas 3º ESO

  4. GRÁFICA DE LA FUNCIÓN AFIN • Sea  f(x) = mx+n • El parámetro m es la pendiente de la recta, y n es la ordenada en el origen. •  Tabla de valores: • x y • 0 n • x1 y1 • x2 y2 • Conocidos dos puntos que pertenecen a la función afín: • Calculamos m • y2 – y1 • m = ------------ • x2 – x1 y=f(x) y2 y1 0 x1 x2 x n Apuntes de Matemáticas 3º ESO

  5. Ejemplo_1 • Una caja de 40 chocolatinas nos ha costado 8 €. La misma caja conteniendo 60 chocolatinas nos ha costado 11 €. ¿Cuánto cuesta el envoltorio, si el precio de cada chocolatina de ambas cajas es el mismo?. • Resolución analítica: • Sea m el precio de cada chocolatina. • Sea x la cantidad de chocolatinas. • Sea n lo que cuesta el envoltorio. • Función de proporcionalidad directa, pues a más chocolatinas cuesta más la caja y cada chocolatina vale siempre lo mismo: • y = m.x +n • 8 = m.40+n en una caja. • 11 = m.60 + n en la otra caja. • Sabemos que m = (11 – 8)/(60 – 40) = 3/20 = 0,15 € • Luego 8 = 0,15.40 + n  8 = 6 + n  n = 8 – 6  n = 2 • El envoltorio vale 2 € Apuntes de Matemáticas 3º ESO

  6. Una caja de 40 chocolatinas nos ha costado 8 €. La misma caja conteniendo 60 chocolatinas nos ha costado 11 €. ¿Cuánto cuesta el envoltorio, si el precio de cada chocolatina de ambas cajas es el mismo?. • Resolución gráfica: 12 10 8 6 4 2 0 10 20 30 40 50 60 Nº Choc Apuntes de Matemáticas 3º ESO

  7. Ejemplo_2 • Queremos llenar de agua una bañera. A los cuatro minutos de abrir el grifo tenemos 400 litros de agua en la bañera y a los seis minutos tenemos 500 litros en la bañera. • ¿Tenía agua la bañera antes de abrir el grifo?. ¿Cuánta agua había?. • ¿Cuánto tardará en llenarse del todo si admite 700 litros como máximo?. • Resolución analítica: • Sea m la cantidad de agua que arroja el grifo cada minuto. • Sea x la cantidad de minutos que se abre el grifo. • Sea y la cantidad de agua en la bañera. • Función de proporcionalidad directa, pues a más tiempo más agua habrá en la bañera y cada minuto el grifo arroja la misma cantidad de agua. • y = m.x +n • 400 = m.4+n a los cuatro minutos. • Calculamos la pendiente: m = (600 – 500)/(6 – 4) = 100/2 = 50 l/min • Luego 400 = 50.4 + n  400 = 200 + n  n = 400 – 200  n = 200 • Antes de abrir el grifo había 200 litros en la bañera. Apuntes de Matemáticas 3º ESO

  8. Queremos llenar de agua una bañera. A los cuatro minutos de abrir el grifo tenemos 400 litros de agua en la bañera y a los seis minutos tenemos 500 litros en la bañera. ¿Tenía agua la bañera antes de abrir el grifo?. ¿Cuánta agua había?. ¿Cuánto tardará en llenarse del todo si admite 700 litros como máximo?. • Resolución gráfica: Litros de agua 700 600 500 400 300 200 100 0 1 2 3 4 5 6 7 8 9 10minutos Apuntes de Matemáticas 3º ESO

  9. y 5 Tm 3 Tm • Ejemplo_3 • En un almacén de trigo una cinta • transportadora desaloja trigo de forma • constante. A las cuatro horas de • funcionar quedan 3 Tm en el almacén • y a las 8 horas queda 1 Tm. • Hallar la función que nos da en todo • momento la cantidad existente en el • almacén en función del tiempo. • ¿Cuánto tiempo debería funcionar • para quedarse vacío el almacén?. • ¿Qué cantidad había inicialmente en el • almacén?. • Si llamamos x al tiempo transcurrido, n a la cantidad inicial que había en el almacén, e y a la cantidad de trigo que queda en cualquier momento: • y = n – m.x , siendo m la pendiente (cantidad que se desaloja cada hora). • 3 – 1 2 • m = ----------- = ----- = 0,50 • 8 – 4 4 • Luego: 3 = n – 0,50.4  3 = n – 2  n = 5 Tm había en el almacén inicialmente. • Para que se cumpla y = 0  0 = 5 – 0,50.x  0,50.x = 5  x = 10 horas 1 Tm x 0 2 4 6 8 10 Apuntes de Matemáticas 3º ESO

  10. EJEMPLO PROPUESTO 4 • Queremos comprar una consola para videojuegos que cuesta 300 €. Nos financian la compra, de modo que pagamos 50 € de entrada y 10 € cada mes, hasta un total de 30 meses. • Estudiar una función que nos dé en todo momento la cantidad que hemos pagado por la consola. • ¿Qué tipo de función resulta?. • Calcular con la fórmula hallada cuánto hemos pagado al cabo de un año. ¿Y de dos años?. • Con los datos anteriores construye el gráfico de la función. • A la vista del gráfico, ¿cuándo habremos pagado ya los 300 € que valía?. • (Tarea para casa) Apuntes de Matemáticas 3º ESO

  11. EJEMPLO PROPUESTO 5 • Un depósito está lleno de aceite. Se abre una válvula que transporta el aceite para su embasado en botellas de litro. A los 20 min de abrir la válvula en el depósito hay 45.000 litros. A las dos horas hay en el depósito 20.000 litros. • Estudiar una función que nos dé en todo momento los litros de aceite que hay en el depósito. • ¿Qué tipo de función resulta?. • Calcular, con la fórmula hallada, cuántos litros habrá a las tres horas de abrir la válvula?. • Con los datos anteriores construye el gráfico de la función. • A la vista del gráfico, ¿cuántos litros tiene el depósito lleno?. ¿En cuánto tiempo se vaciará?. • (Tarea para casa) Apuntes de Matemáticas 3º ESO

  12. PARTICULARIDADES • TODAS LAS FUNCIONES AFINES SON GRÁFICAMENTE RECTAS, PERO NO TODAS LAS RECTAS SON FUNCIONES. • Si la ecuación resulta de la forma x=k • La recta es Vertical. • No podemos hablar de función lineal ni de función afín. • No es una función, aunque exista representación gráfica y sea una recta. f(x)=n f(x)=m.x+n f(x)=m.x x=k Apuntes de Matemáticas 3º ESO

More Related