560 likes | 648 Views
Coulomb’05 High intensity beam dynamics September 12 - 16, 2005 – Senigallia (AN), Italy. From long-range interactions to collective behaviour and from hamiltonian chaos to stochastic models Yves Elskens umr6633 CNRS — univ. Provence Marseille.
E N D
Coulomb’05 High intensity beam dynamics September 12 - 16, 2005 – Senigallia (AN), Italy From long-range interactions to collective behaviour and from hamiltonian chaos to stochastic models Yves Elskens umr6633 CNRS — univ. Provence Marseille http://www.crcpress.com/shopping_cart/products/product_detail.asp?sku=IP464 Senigallia, September 2005
1. Effective dyn., collective deg. freedom • 2. Kinetic concepts • 3. Vlasov • 4. Limitations, extensions : macroparticle, granularity (N<), entropy production... • 5. Boltzmann, Landau, Balescu-Lenard • 6. Quasilinear limit : transport Senigallia, September 2005
1. Long range yields collective degrees of freedom • Ex. mollified Coulomb (Fourier truncated) : H(q,p) = åipi2/(2m) - kånåi,jkn½-2 cos kn.(qi-qj) dt2qj = (1/m) ån En(qj)En(x) = - kåjkn-1 sin kn.(x-qj) år,nAr,n(t) sin (kn.x - wr,nt)with envelopes A varying slowlyAntoni, Elskens & Sandoz, Phys. Rev. E 57 (1998) 5347 Senigallia, September 2005
1 wave and 1 particle • Integrable system • Locality in velocity : p-wj/kj2 ~ 4 kjIj1/2 Senigallia, September 2005
Beam-plasma paradigm Underlying plasma electrostatic modes (Langmuir, Bohm-Gross) Senigallia, September 2005
M waves and N particles • Effective lagrangian • Effective hamiltonian H(p, q, I, f) = åipi2/2 + åjwj Ij - åi,jkjIj1/2 cos (kjqi-fj)coupling type mean field (global), 2 speciesconstants : H, P = åipi + åjkj Ij Senigallia, September 2005
Effective hamiltonian • Dynamical reduction to an effective lagrangian and hamiltonian (“good chaos” vs quasi-constants of motion) N0 >>M+ N1Ex. : N0 particles, Coulomb M modes (collective, principal) + N1 particles (resonant or test)Effective dynamics & thermodynamics Elskens & Escande, Microscopic dynamics of plasmas and chaos(IoP, 2002) Senigallia, September 2005
2. micro- < ... < macroscopic :Kinetic concepts • Phase space for the dynamics : R6NInstantaneous state : x = ((q1,p1), ..., (qN,pN))Probability distribution : f(N)(x,t) dNxRealization : f(N)(y,t) = Pj=1Nd(yj-xj(t))Evolution (Liouville) : df/dt = -[H,f] tf + Sj (pj/m).f /qj+ SjFj(x).f /pj= 0 Senigallia, September 2005
Kinetic concepts • Observations : m space (Boltzmann) R6Instantaneous state : {(q1,p1), ..., (qN,pN)}Marginal distribution : f(1)(q1,p1,t) dq1dp1 = ..f(N)(q1,p1,t) Pj=2N dqjdp1... symmetrized : f(1s)(q,p,t) = N-1 Sjf(1)(qj,pj,t) Senigallia, September 2005
Kinetic concepts • Realization : f(1s)(y,t) = N-1 Sj=1Nd(yj-xj(t))Evolution (BBGKY) : tf(1) + (p/m).qf(1)+ F(q,p).pf(1)= 0with F(q,p) = F[f (N)] = ... Senigallia, September 2005
Kinetic concepts • Fluid moments : n(q,t) = Nf(1s)(q,p,t) dpn u(q,t) = N(p/m)f(1s)(q,p,t) dp ... • Conservation laws by integration and closure Senigallia, September 2005
Kinetic concepts • Weak coupling : molecular independence approximation f(N)(q,p,t) Pjf(1)(qj,pj,t) ... coherent with Liouville ? No ! ... supported by dynamical chaos ?... good approximation? Senigallia, September 2005
3. Vlasov • Coupling of mean field type : F1(q,p) = F1[f (N)] = N-1 Sj=2NF1j(qj-q1) and for N :F1(q,p) F1j(q’-q1) f (1s) (q’,p’) dq’dp’ if the force is smooth enough (not pure Coulomb – OK if mollified)then : VlasovSpohn, Large scale dynamics of interacting particles (Springer, 1991) Senigallia, September 2005
Vlasov • Estimates for separation of solutionsf(1s)(y,t) - g(1s)(y,t) <f(1s)(y,0) - g(1s)(y,0) elt l : majorant for Liapunov exponent in R6Nidea : test particles norm .weak enough for Dirac Senigallia, September 2005
Vlasov • Ex. : g(1s)(y,0) “smooth” f(1s)(y,0) = N-1 Sj=1Nd(yj-xj(0))f(1s)(y,0) - g(1s)(y,0) <cN-1/2 • limNlimt limtlimNFirpo, Doveil, Elskens, Bertrand, Poleni & Guyomarc'h, Phys. Rev. E 64 (2001) 026407 Senigallia, September 2005
4. M waves and N particles • Effective hamiltonian mean field, 2 speciesH(p, q, I, f) = åipi2/2 + åjwj Ij - åi,jkjIj1/2 cos (kjqi-fj) • for M fixed, N : Vlasov • M=1 : free electron laser, CARL, ... Senigallia, September 2005
4.1. Cold beam instability Senigallia, September 2005
Cold beam instability Senigallia, September 2005
Cold beam instability Senigallia, September 2005
Cold beam instability Senigallia, September 2005
4.2. Instability and damping Warm beam : gL = c df/dv Senigallia, September 2005
Warm beam instability Senigallia, September 2005
Warm beam instability Senigallia, September 2005
Warm beam instability N2 :gLt = 200 Senigallia, September 2005
Warm beam instability N2 :gLt = 200 particles initially in range 0.99 < v < 1.00 1.03 < v < 1.04 Senigallia, September 2005
Vlasov • Casimir invariants dt f(1s)(q,p,t) = 0 dtF[f(1s)(q,p,t)] dq dp = 0 (if exists) conserve all entropies ! • Trend to equilibrium ? No hamiltonian attractor !... but weak convergence g(q,p) f(1s)(q,p,t) dq dp (for any g)via filamentation Senigallia, September 2005
Warm beam instability Senigallia, September 2005
4.3. Thermalization (M=1) Dynamics : non-linear regimes (trapping)Canonical ensemble : phase transition Firpo & Elskens, Phys. Rev. Lett. 84 (2000) 3318 Senigallia, September 2005
Thermalization (M>>1) Y. Elskens & N. Majeri (2005) Senigallia, September 2005
4.4. Chaos & entropy production • Chaos : Liapunov exponents > 0l1 = sup limtln dx(t)/dx(0)l1+l2 = sup limtln da12(t)/da12(0)da12(t) = dx1(t) dx2(t) ... Senigallia, September 2005
Chaos & entropy production • Hamilton Poincaré-Cartan : dt Sj=13N dpj dqj = 0 symmetricspectrum l6N-j = -lj Liouville : dt Pj=13N dpjdqj = 0 sumSj=16Nlj = 0 no attractor ! Senigallia, September 2005
Chaos & entropy production • Dynamical complexity : entropy production per time unit dSmacro/dt<kB hKS ~ kB Sj lj+Arnold & Avez, Problèmes ergodiques de la mécanique classique (Gauthier-Villars, 1967)Pesin, Russ. Math. Surveys 32 n°4 (1977) 55Elskens, Physica A 143 (1987) 1Dorfman, An introduction to chaos in nonequilibrium statistical mechanics (Cambridge, 1999) Senigallia, September 2005
5. Kinetic approach : Boltzmann and variations • Forces with short range (collisions), dilutionBoltzmannAnsatz : tf(1s) + (p/m).qf(1s)+ Fext(q,p).pf(1s)= Q[f(2s)] (BBGKY) Q[f(1s) f(1s)] (non-local in p)= (f+(1s) f*+(1s) - f(1s) f*(1s)) b(w, p*-p) dw dp* Senigallia, September 2005
Boltzmann • Valid with probability 1 in Grad limit : N , Nr2 = cstfor 0 < t < tfree/5or for expansion in vacuum... longer time ? open problem ! Spohn, Large scale dynamics of interacting particles (Springer, 1991) Senigallia, September 2005
Boltzmann • Entropy :nsBoltzmann(q,t) = - kB f(1s)(q,p,t) ln (f(1s)(q,p,t)/f0) dp • H theorem : dsBoltzmann/dt> 0and = iff f(1s) locally maxwellian ; then sBoltzmann[f(1s)] = smicrocan[n,e] Senigallia, September 2005
Boltzmann • Irreversibility... byproduct of symmetry (microreversibility) of collisions • H theorem : tool for existence and regularity of solutions Friedlander & Serre, eds, Handbook of mathematical fluid dynamics (Elsevier, 2001,... ) Senigallia, September 2005
Landau, Balescu-Lenard-Guernsey • Forces with long range and collisionstf(1s) + (p/m).qf(1s)+ Fext(q,p).pf(1s)= - p. kU.(p* -p) (f(1s) f*(1s)) dp*U = (...)dk (Coulomb, Fourier) Senigallia, September 2005
Landau, Balescu-Lenard-Guernsey • H theorem, maxwellian equilibria • Diagrammatic derivation... “challenge for the future”Balescu, Statistical dynamics (Imperial college press, 1997)Spohn, Large scale dynamics of interacting particles (Springer, 1991) Senigallia, September 2005
6. M waves and N particles(weak Langmuir turbulence) Senigallia, September 2005
M waves and N particles • Effective hamiltonian H(p, q, I, f) = åipi2/2 + åjwj Ij - åi,jkjIj1/2 cos (kjqi-fj)mean field type coupling, 2 speciesconstants : H, P = åipi + åjkj Ij Senigallia, September 2005
1 wave and 1 particle • Integrable system • Locality in velocity : p-wj/kj2 ~ 4 kjIj1/2 Senigallia, September 2005
1 particle in 2 waves • Resonance overlaps = [2(k1I11/2)1/2+2(k2I21/2)1/2] / / w1/k1-w2/k2 Senigallia, September 2005
1 particle in M waves Bénisti & Escande, Phys. Plasmas 4 (1997) 1576 Senigallia, September 2005
Quasilinear limit • 0 < tcorr ~ M-1 < t < tQL (gas : cf. tfree) dtq = v dtv = åjkjkjIj1/2 sin (kjq- fj) ~ white noisetQL>J-1/3 ln s4/3 (or larger) • t > tbox : dynamical independencetbox ~ J-1/3 Senigallia, September 2005
Stochasticity in parameters dynamical chaos(1 particle in M waves) Senigallia, September 2005
Stochasticity in parameters dynamical chaos Senigallia, September 2005
Quasilinear limitresonance box (Bénisti & Escande) Senigallia, September 2005
Quasilinear limit : M (s), fj random • Dense wave spectrum vj+1-vj = Dvj ~ M-1 : “particle diffusion” (Smoluchowski-Fokker-Planck) tf = v(2aJvf) • Coupling coefficients a(v) = a(wj/kj) = pNkj2/4 • Waves : J(v) = J(wj/kj) = kjIj /(N Dvj) Senigallia, September 2005
Quasilinear limit : M (s), N • Dense wave spectrum vj+1-vj = Dvj ~ M-1 : tf= vQ • Many particles, poorly coherent : induced and spontaneous emission tJ = Q • Reciprocity of wave-particle interactions Q= 2aJvf – FspontfFspont(v) = - 2 a /(N Dvj) Senigallia, September 2005
Quasilinear limit • H theorem S = - [f ln (f/f0) + (2a)-1Fspont ln J] dv • No Casimir invariants for f(v,t) • Phenomenological equations of markovian type : regeneration of instantaneous stochasticity by “good dynamical chaos” Senigallia, September 2005