200 likes | 346 Views
Area scaling in Minkowski space. Rindler space thermodynamics. Area scaling in Minkowski space. Bulk - boundary correspondence. t. Acceleration = a/ z. z =const. Proper time = . = const. t= z /a sinh(a h ). x. x= z /a cosh(a ). ds 2 = -a 2 z 2 d h 2 +d z 2 + S dx i 2.
E N D
Area scaling in Minkowski space • Rindler space thermodynamics. • Area scaling in Minkowski space. • Bulk - boundary correspondence.
t Acceleration = a/z z=const Proper time = = const t=z/a sinh(ah) x x=z/a cosh(a) ds2 = -a2z2dh2+dz2+Sdxi2 Rindler space(Rindler 1966) ds2 = -dt2+dx2+Sdxi2
t ah≈ ah+i2p x Radiation at temperature b0 = 2p/a Unruh Radiation(Unruh, 1976) = 0 ds2 = -a2z2dh2+dz2+Sdxi2 Avoid a conical singularity Periodicity of Greens functions
f(x,0)=y’(x) S=Tr(r ln r) A f(x,b)=y’’(x) -bF=ln(Tr(r)) A Thermodynamics in curved space ’,’’= ’| e-bH|’’ e-SE+… Df
f(x,0+)=y’(x) f(x,0)=y(x) f(x,0-)=y’’(x) t y’(x) y’’(x) x A different method to obtain rKabat and Strassler, 1994)
y’ y’’ Exp[-SE] Df in out f(x,0+)=y’(x) f(x,0-)=y’’(x) Trout(y’ y’’ Exp[-SE] DfDout in y’in y’’in Exp[-SE] Df f(x,0+) = y’in(x)yout(x) f(x,0-) = y’’in(x)yout(x) f(x,0+) = y’in(x) f(x,0-) = y’’in(x) A different method to obtain r rin(y’in,y’’in) =
in y’in y’’in Exp[-SE] Df f(x,0+) = y’in(x) f(x,0-) = y’’in(x) t y’in(x) x y’’in(x) A different method to obtain r ’| e-bHR|’’
t 0 ’,’’= ’| e-bHR|’’ x 0 ’,’’= ’| e-bHR|’’ Intermediate summary I
V V Tr(rinOV) More relations in Minkowski space OV= V O ddx
V V Isothermal compressibility: k (N-N)2 Schematic picture Statistical mechanics In Rindler space (if V is half of space) Q.M. in V of Minkowski space Statistical Mechanics in Minkowski space with d.o.f restricted to V Heat capacity in Rindler space: C A (HR-HR)2 = Tr(rin(HR-HR)2) = Tr(e-bHR(HR-HR)2])
Assumptions: V S(V) Area scaling of fluctuations(R. Brustein and A.Y. , 2003) U.V. cutoff 0(OV)20 0OiV OjV 0 S(V)
F(x)=2f(x) Since F(x) = eiqxcosqF(q) ddq D(x)=V V d(xxy) ddx ddy and F (q) ~ qa = GVVxd-1 – GSS(V)xd+O(xd+1) ∂ x(D(x)/xd-1) S Area scaling of correlation functions OiV OjV = V V Oi(x)Oj(y) ddx ddy =V V Fij(|x-y|) ddx ddy = D(x) Fij(x) dx OiV OjV = - ∂ x(D(x)/xd-1)xd-1 ∂xf(x) dx Introduce U.V. cutoff short~ 1/L distances
V V Unruh radiation and Area dependent thermodynamics Statistical ensemble due to restriction of d.o.f Intermediate summary II Area scaling of Fluctuations due to entanglement
V2 OV1OV2 V1 OV1OV2 S(B(V1)B(V2)) OV1OV2 Evidence for bulk-boundary correspondence OV1OV2- OV1OV2 V1 V2 Pos. of V2 Pos. of V2
Large N limit A working example
Area scaling of Fluctuations due to entanglement Unruh radiation and Area dependent thermodynamics Statistical ensemble due to restriction of d.o.f V V Boundary theory for fluctuations V Summary
On the other hand: Hence: Proof that 0|OV |0=Tr(rinOV) Start with the vacuum state: Find rin: