250 likes | 402 Views
Area scaling from entanglement in flat space quantum field theory. Introduction Area scaling of quantum fluctuations Unruh radiation and Holography. Black hole thermodynamics. J. Beckenstein (1973). S. Hawking (1975). S = ¼ A. S A. T H. out. in. V. V. An ‘artificial’ horizon.
E N D
Area scaling from entanglement in flat space quantum field theory • Introduction • Area scaling of quantum fluctuations • Unruh radiation and Holography
Black hole thermodynamics J. Beckenstein (1973) S. Hawking (1975) S = ¼ A S A TH
out in V V An ‘artificial’ horizon.
Entropy: Sin=Tr(rinlnrin) Srednicki (1993) Sin=Sout
out Entanglement entropy of a sphere Srednicki (1993) in Entropy R2
? ? A A Other Thermodynamic quantities Heat capacity: More generally:
out in A different viewpoint Restricted measurements No access =
Area scaling of fluctuationsR. Brustein and A.Y. , (2004) OaV12 OaV1ObV2 V2 V1 Assumptions:
Area scaling of correlation functions OaV1ObV2 = V1 V2 Oa(x) Ob(y) ddx ddy = V1 V2 Fab(|x-y|) ddx ddy = D(x) Fab(x) dx = D(x) 2g(x) dx = - ∂x(D(x)/xd-1) xd-1 ∂xg(x) dx Geometric term: Operator dependent term D(x)=V V d(xxy) ddx ddy
V2 V1 Geometric term D(x)=V1 V2d(xxy) ddx ddy = d(xr) ddr ddR ddR Ax +O(x2) d(xr) ddr xd-1 +O(xd) D(x)=C2 Axd + O(xd+1)
Geometric term D(x)= d(xr) ddr ddR V1=V2 ddR V + Ax +O(x2) d(xr) ddr xd-1 +O(xd) D(x)=C1Vxd-1 ± C2 Axd + O(xd+1)
Area scaling of correlation functions OaV1ObV2 = V1 V2 Oa(x)Ob(y) ddx ddy = V1 V2 Fab(|x-y|) ddx ddy = D(x) Fab(x) dx = D(x) 2g(x) dx = - ∂x(D(x)/xd-1) xd-1 ∂xg(x) dx UV cuttoff at x~1/L ∂ x(D(x)/xd-1) 1/L A D(x)=C1Vxd-1 + C2 Axd + O(xd+1)
V V Intermediate summary Tr(rinOV) Tr(rinOV2)
Trout(y’ y’’ rin(y’in,y’’in) = Exp[-SE] DfDout f(x,0+)=y’(x) f(x,0)=y(x) f(x,0+)=y’(x) f(x,0-)=y’’(x) t f(x,0-)=y’’(x) in y’in y’’in Exp[-SE] Df f(x,0+) = y’in(x)yout(x) y’in(x) y’(x) y’’(x) f(x,0-) = y’’in(x)yout(x) x y’’in(x) f(x,0+) = y’in(x) f(x,0-) = y’’in(x) Finding rin
in y’in y’’in Exp[-SE] Df f(x,0+) = y’in(x) f(x,0-) = y’’in(x) t y’in(x) x y’’in(x) Finding rho Kabbat & Strassler (1994) ’| e-bK|’’
t Acceleration = a/z z=const Proper time = = const t=z/a sinh(ah) x x=z/a cosh(a) ds2 = -a2z2dh2+dz2+Sdxi2 Rindler space(Rindler 1966) ds2 = -dt2+dx2+Sdxi2 HR = Kx
t ah≈ ah+i2p x Radiation at temperature b0 = 2p/a Unruh Radiation(Unruh, 1976) = 0 ds2 = -a2z2dh2+dz2+Sdxi2 Avoid a conical singularity Periodicity of Greens functions rR= e-bHR= e-bK= rin
V V Schematic picture Canonical ensemble in Rindler space (if V is half of space) VEVs in V of Minkowski space Observer in Minkowski space with d.o.f restricted to V Tr(rROV) Tr(rinOV) = =
t in y’in y’’in Exp[-SE] Df y’in(x) x y’’in(x) f(x,0+) = y’in(x) f(x,0-) = y’’in(x) Other shapesR. Brustein and A.Y., (2003) rb=y’in|e-bH0|y’’out d/dt H0 = 0 SE = 0bH0dt x(x,t), h(x,t), +B.C. H0=K, in={x|x>0}
V2 OV1OV2 V1 OV1OV2 A1A2 OV1OV2 Evidence for bulk-boundary correspondence R. Brustein D. Oaknin, and A.Y., (2003) OV1OV2- OV1OV2 V1 V2 Pos. of V2 Pos. of V2
A working example Large N limit R. Brustein and A.Y., (2003)
Area scaling of Fluctuations due to entanglement Unruh radiation and Area dependent thermodynamics Statistical ensemble due to restriction of d.o.f V V Boundary theory for fluctuations A Summary • A Minkowski observer restricted to part of • space will observe: • Radiation. • Area scaling of thermodynamic quantities. • Bulk boundary correspondence*.
Theory with horizon (AdS, dS, Schwarzschild) Statistical ensemble due to restriction of d.o.f V V Boundary theory for fluctuations A ? ? ? Speculations Area scaling of Fluctuations due to entanglement Israel (1976) Maldacena (2001)