140 likes | 339 Views
CDA 3101 Fall 2013 Introduction to Computer Organization. Division 30 September 2013. Review. Multiplication can be implemented using simple shift and add hardware Algorithm is similar to the grade-school method
E N D
CDA 3101 Fall 2013Introduction to Computer Organization Division 30 September 2013
Review • Multiplication can be implemented using simple shift and add hardware • Algorithm is similar to the grade-school method • Booth’s algorithm for two’s complement • Handles all cases of positive/negative operands • More efficient than conventional algorithm 2n + 2n-1 + 2n-2 + … + 2k = 2n+1 - 2k • Further optimization is possible • MIPS multiply instructions ignore overflow • Multu: Hi = 0 • Mult: Hi = replicated sign of Lo
Division • Long division of unsigned binary integers 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 Quotient Dividend Divisor Partial remainders Remainder Dividend = Quotientx Divisor + Remainder
Unsigned Division M Divisor Q Dividend Count n, A 0 START Shift left: A, Q A A - M No Yes A < 0? Q0 0 A A + M Q0 1 Count Count - 1 No Yes Quotient in Q Remainder in A Count = 0 ? END
Division Hardware Divisor M31 . . . M0 32-bit ALU 4’ Add 2 Subtract 4’ write 0 Control 4 write 1 1 SLL 3 A31. . . A0 Q31. . . Q0 Dividend
Examples A Q 0000 0111 0000 1110 1101 1110 0000 1110 0001 1100 1110 1100 0001 1100 0011 1000 0000 1000 0000 1001 0001 0010 1110 0010 0001 0010 M = 0011 7 / 3 : Initial values Shift A = A - M A = A + M 1 Shift A = A - M A = A + M 2 Shift A = A - M Q0 = 1 3 Shift A = A - M A = A + M 4
Signed Division • Simplest solution • Negate the quotient if the signs of divisor and dividend disagree • Remainder and dividend must have the same signs • Remainder = (Dividend – Quotient * Divisor) (+7) / (+3): Q = 2; R = 1 (-7) / (+3): Q = -2; R = -1 (+7) / (-3): Q = -2; R = 1 (-7) / (-3): Q = 2; R = -1
Signed Division Algorithm A, Q Dividend M Divisor, Count n START Shift left: A, Q S A31, Count Count - 1 No Yes A A + M M31 = A31? A A - M No Yes S= A31? Yes No A=0 and Q=0 ? Q0 1 Restore A Quotient in Q Remainder in A Yes No Count = 0 ? END
Examples (1/2) A Q 0000 0111 0000 1110 1101 0000 1110 0001 1100 1110 0001 1100 0011 1000 0000 0000 1001 0001 0010 1110 0001 0010 A Q 0000 0111 0000 1110 1101 0000 1110 0001 1100 1110 0001 1100 0011 1000 0000 0000 1001 0001 0010 1110 0001 0010 M = 0011 M = 1101 Initial values Initial values Shift Subtract Restore Shift Add Restore 1 1 Shift Subtract Restore Shift Add Restore 2 2 Shift Subtract Q0 = 1 Shift Add Q0 = 1 3 3 Shift Subtract Restore Shift Add Restore 4 4 (7) / (3) (7) / (-3)
Examples (2/2) A Q 1111 1001 1111 0010 0010 1111 0010 1110 0100 0001 1110 0100 1100 1000 1111 1111 1001 1111 0010 0010 1111 0010 A Q 1111 1001 1111 0010 0010 1111 0010 1110 0100 0001 1110 0100 1100 1000 1111 1111 1001 1111 0010 0010 1111 0010 M = 0011 M = 1101 Initial values Initial values Shift Add Restore Shift Subtract Restore 1 1 Shift Add Restore Shift Subtract Restore 2 2 Shift Add Q0 = 1 Shift Subtract Q0 = 1 3 3 Shift Add Restore Shift Subtract Restore 4 4 (-7) / (3) (-7) / (-3)
MIPS • Multiply and divide use existing hardware • ALU and shifter • Extra hardware: 64-bit register able to SLL/SRA • Hi contains the remainder (mfhi) • Lo contains the quotient (mflo) • Instructions • Div: signed divide • Divu: unsigned divide • MIPS ignores overflow ? • Division by 0 must be checked in software
Registers 32 16 Sign extend 0 1 IR: M ALU Sub Control Unit Operation Zero Overflow 0 1 2 Memory address SLL/SRA Hi Lo MIPS Processor