1 / 31

M.Battaglieri & G.M.Urciuoli p er conto della c ollaborazione JLAB12 INFN -GE, INFN-RM1 Italy

Commissione Scientifica Nazionale III Torino 16 Settembre 2013. L’esperimento JLAB12 : stato e prospettive. M.Battaglieri & G.M.Urciuoli p er conto della c ollaborazione JLAB12 INFN -GE, INFN-RM1 Italy. Sommario. Jefferson Lab a 6 GeV e progressi verso l’ upgrade a 12 GeV

omar
Download Presentation

M.Battaglieri & G.M.Urciuoli p er conto della c ollaborazione JLAB12 INFN -GE, INFN-RM1 Italy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Commissione Scientifica Nazionale III Torino 16 Settembre 2013 L’esperimentoJLAB12 : stato e prospettive M.Battaglieri & G.M.Urciuoli per contodellacollaborazione JLAB12 INFN -GE, INFN-RM1 Italy

  2. Sommario • Jefferson Lab a 6 GeVeprogressiverso l’ upgrade a 12 GeV • Il programma di fisica a Jlab. • JLAB12: la collaborazioneitaliana a Jlab

  3. I parametri del CEBAF • Fascioprimario: Elettroni • Energia del fascio: 4 GeV(iniziale) • 10 > λ > 0.1 fmtransizionenucleone→ quarkstatieccitatibarionici e mesonici • 100% Duty Factor (cw) Beam • esperimenti in coincidenza • Trefascisimultanei di energia e intensitàvariabiliindipendentemente e in modocomplementare, esperimentilunghi • Polarizzazione (fascio e prodotti di reazione) • gradi di libertà di spin • correntineutredeboli 6 GeVnelpassato 12 GeVprossimamente L > 106 x SLAC al tempo degliesperimentioriginali DIS! La luminosità di JLab12 aumenterà di un fattore10 x

  4. Jefferson Lab nelpassato(6 GeV)

  5. The 12 GeV upgrade • Il disegno e le performance del CEBAF hannoresol’upgrade in energia “facile”. • Le cavità RF del CEBAF eccedono le specifiche di disegno di un 50% • Ottenuta di routine un’energiamassima di fascio di 6 GeV(energiamassima • nominale: 4 GeV) • ARCS puo’ fornire un fascio di elettronisino a 24 GeV • Upgrade dell’acceleratore • Costruzione di nuoviapparati per Hall A, B eC • Costuzione di unanuovasalasperimentale (Hall D) • L’upgrade del CEBAF a12 GeV(la piùaltapriorità del 2007 NSAC Long Range Plan) è quasi ultimato • Il progetto è “on cost and on schedule” e quasi completato • Le operazioniiniziali con ilfascioinizierannoin Hall A nella prima metà del 2014 e l’acceleratoresaràcompletamenteoperativoentrogiugno2015 • Il programma di ricerche a 12 GeVstaevolvendorapidamente

  6. Upgrade magnets and power supplies CHL-2 Enhance equipment in existing halls CEBAF @12 GeV Add new hall

  7. Gliapparati per Jlab a 12 GeV Hall A – Spettrometri ad altarisoluzione e un nuovorivelatore multipurpose a grandeaccettanza Hall C – Super High Momentum Spectrometer (SHMS) short range correlations, fattori di forma e nuoviesperimenti : SOLID, MOELLER, SBS Determinazioneprecisadelleproprietàdei q di valenzaneinucleoni e nei nuclei Hall D – RivelatoreGLUEx per esperimenti di fotoproduzione Hall B – Rivelatore a grandeaccettanza CLAS12 for misure a grandeluminosità (1035cm-2s-1) Le origini del confinamentoattraverso lo studio deimesoniibridi Comprensionedellastruttura del nucleone via GPDs and TMDs e spettroscopiaadronica

  8. Time schedule & Costi 18 maggio 2012: completatoilprogramma a 6 GeV! 16 mesi di installazione: maggio2012 – settembre 2013 Commissioning Hall A inizia: febbraio 2014 Commissioning Hall D inizia: ottobre 2014 Commissioning Hall B/C inizia: gennaio/febbraio 2016 Completamento del progetto:marzo2017 • 12 GeV - Total project cost: 310M$ • ~75% completed (~90% obligated) at June 2013 • Base equipment fully funded by DOE • JLAB12 (Italy) contributes to extra equipment

  9. Missionescientifica di Jlab • Capire come gliadronisonoformatidai quark e daigluoni • Capire le basidella QCD per la forzanucleone-nucleone • Esplorareilimitidella nostra comprensionedellastrutturanucleare • Alta precisione • Corte distanze • La transizionedalladescrizionenucleone-mesonealladescrizione da QCD • Per fare progressi in questeareedobbiamorispondere a unaserie di • interrogativi: • Qual’èilmeccanismo del confinamento? • Dove la dinamicadell’interazione q-q compieunatransizione dal regime forte (confinamento) al regime perturbativo QCD (tipo QED) ? Esplorarenuovafisicaattraverso test di altaprecisione del Modello Standard 9

  10. JLab12 science:today and in the 12 GeV era • Nucleon Structure • EM, EW, and Flavor-Separated Form Factors • Transverse Momentum Distributions (TMD) • Nuclear Structure and the Quark Structure of Nuclei • HypernuclearPhysics Quark Electro-Weak Couplings and Standard Model Tests • The Physics of Confinement – the Search for Hybrid Mesons

  11. NUCLEON STRUCTUREfrom elastic form factors to TMDs & GPDs The Proton and Neutron arethe “Hydrogen Atoms” of QCD What we “see” changes with spatial resolution < 0.1 fm “bare” quarks and glue 0.1 — 1 fm Constituent quarks and glue >1 fm Nucleons S=1/2 S=1/2 S=1/2 Q = 1 Q = 1 Q = 1

  12. NUCLEON STRUCTUREfrom elastic form factors to GPDs X. Ji, D. Müller, A. Radyushkin (1994-1997) Deep Exclusive Scatteringfully-correlated quark distribution in both coordinate and momentum space (GPD&TMD) Elastic Scattering transverse quark distribution in Coordinate space (charge and current densities) Deep Inelastic Scattering longitudinal quark distribution in momentum space (momentum and helicity distributions)

  13. JLab data on the EM form factors provide a testing ground for theories constructing nucleons from quarks and glue Before JLab and Recent non-JLab Data

  14. JLab data on the EM form factors provide a testing ground for theories constructing nucleons from quarks and glue Today, including new JLab Data

  15. JLab data on the EM form factors provide a testing ground for theories constructing nucleons from quarks and glue Today, including new JLab Data, compared to theory

  16. Form Factors – Plans for 12 GeV Today

  17. Form Factors – Plans for 12 GeV JLab at 12 GeV

  18. SiD SBS Spectrometer in Hall A • High luminosity • Moderate acceptance • Forward angles • Reconfigurable detectors ⇓ Form Factors at high Q2 Precision SIDIS • JLab12 Responsibility • Front Tracker (GEM+SiD) • Readout Electronics (FT) BA, CT, GE, ISS, RM1 UVa JLab INFN Rutgers U. College WM U. of Glasgow Norfolk State U. Carnegie Mellon U. U. of New Hampshire • SBS Tracker: • Based on the recent GEM technology and SiliconMicrostrips • Large chamber, small dead area, minimum material budget, for high luminosityexperiments

  19. Front Tracker GEM construction process Revision CT Foils from GEM Stretching Gluing the next frame with spacers GE Sanità/BA: Test and characterization by cosmics (Analysis example) Electronics based on APV25 chip Radiation Tolerant Components in FEC VME64x compliant readout Modular Noiselevel ~ 10 ADC unit used in Olympus

  20. Front Tracker GEM construction process Stretching Revision Foils from CERN Gluing Frame CT/Clean Room Integrate electronics, gas pipes, HV ...) Compressing (uniform gluing, remove air from glue and contact surfaces) GE Sanità/BA: Test and characterization by cosmics (Analysis example) Electronics based on APV25 chip Radiation Tolerant Components in FEC VME64x compliant readout Modular Noiselevel ~ 10 ADC unit used in Olympus

  21. Primi moduli GEM finali 40x50 cm2 Solenoid 2x2 small scintillators as telescope for trigger One big GEM in solenoid open space One big GEM beyond the magnet as reference tracking Basically all final components under test (big GEMs, electronics, gas system, cabling ...) Analysis in progress --- Beam Profile BigGEM in solenoid x X y Clean hits vs time Small GEM, ref. y BigGEM as 2xGEM, ref.

  22. Rivelatore a microstrisce di silicio: 105 mm Strip Pitch 50 µm DC PAD for bonding (200x40 µm2) Guard Ring PAD (500x90 µm2)

  23. Circuiti stampati per il piano X e il piano Y Piano X Piano Y

  24. Sistema completo con elettronica di lettura APV25 Backplane Kapton

  25. SBS Tracker: summary • Participants: • INFN/BA – gas system and test • INFN/CT – GEM assembling, mechanics, test, analysis • INFN/GE – electronics design • INFN/ISS – design, test, analysis and coordination • INFN/RM1 – Silicon tracker • JLab, Glasgow, UvA, Ruthers, UNH, CMU – SBS collaboration • Funding: (prototyping and realization) 1 M$ • Status: most of the components procured or ordered; GEM assembling underway; characterization in progress. SiliconMicrostripprototype ready by the end of 2013. Siliconmicrostripplanes ready by the end of 2014. • Expectedinstallation 2015 (delayed by JLab/HallA schedule) • Note: project delayed by ~ 1 year – due mainly to foil delivery and first quality check failures. Do not affect JLab plan!

  26. HCAL-J Design HCAL-J based on COMPASS HCAL1 Each module: 15 cm x 15 cm Layered scintillator and iron 24 Modules (360cm) Replicate with small design modifications 12 Modules (180 cm) Existing HCAL1 in COMPASS 288 modules for JLab HCAL Integral WLS/ Light guide Acrylic with Coumarin-7 impregnated surface 5 mm thick Light Guide /WLS 40 layers 20 mm iron / 5 mm scintillator Novel light guide for 1 in PMTS Steel casing Hole in downstream light guide

  27. Study Λ-N Interaction potential Hypernuclei at JLab Experimental requirements: - Excellent Energy Resolution - Detection at very forward angles (6°→septum magnets) - Excellent PId for kaon selection →RICH - High luminosity Experiment E94-107 Hypernuclear spectroscopy 9Be (e,e’k+) 9 ΛLi reaction Reactions Investigated: 9Be→9LiΛ (3 spin doublets, information on Δ) 12C→12BΛ (evidence of excited core states → sN contribution) 16O→16NΛ (unmatched peak may indicate large sΛ term) H →Λ,Σ0 (elementary process) Published Analisi dell’esperimento sulla produzione di ipernuclei a Jlab completamente in mano alla collaborazione italiana: - M. Iodice, F. Cusanno et al., Phys. Rev. Lett. 99, 052501 (2007) (ipernucleo12ΛB) - F. Cusanno, G.M. Urciuoliet al., Phys Rev. Lett. 103 202501 (2009) (ipernucleo16ΛN) - G.M. Urciuoli, F. Cusanno, S. Marrone et al. Sottomesso a PHYS REV C Thanks to energy resolution improvements a clear three peak structure appears in the excitation energy spectrum. RM1, ISS

  28. Experiment E06-007 208Pb(e,e’p)207Tl and 209Bi(e,e’p)207Pb cross sections at true quasielastic kinematics (xB=1, q=1 GeV/c, ω=0.433 GeV/c ) and at both sides of q Never been done before for A>16 nucleus • Determine the spectroscopic factors dependence with Q2 • Long range correlations: not needed! • Relativistic effect in nuclei: needed! RM1, ISS

  29. Lead (208Pb) Radius Experiment: PREX Elastic Scattering Parity Violating Asymmetry Hall A Collaboration Experiment E=1GeV, J=5o e on lead A neutron skin established at ~93 % CL Neutron Radius RN = 5.78 + 0.16 - 0.18 fm Neutron Skin RN - RP = 0.33 + 0.16 - 0.18 fm 208Pb PREX-II Approved by JLab-PAC (Aug 2011) with high rating RM1

  30. Future equipment for PaVi experiments at JLab SOLID (PV e- - q scattering + SIDIS) - PV e-quark - High precision TMD

More Related