180 likes | 434 Views
An overview. Dynamics Responses of welded plates. Aluno: Marcio Vital de Arruda 2017103393. MPF11-Mechanical vibrations. Motivation Measurements methods From the beginning New horizon Simulations Conclusions Total number of slides - XXX. summary. Residual stresses
E N D
An overview Dynamics Responses of welded plates Aluno: Marcio Vital de Arruda 2017103393 MPF11-Mechanical vibrations
Motivation • Measurements methods • From the beginning • New horizon • Simulations • Conclusions • Total number of slides - XXX summary
Residual stresses • Direct influence on the materials (Dieter, 1961) • Fatigue • Frature • Stress corrosion crack • Dimensional stability Motivation
Destructives (Jurcius and Valiulis, 2013) • Portion of the residually-stressed • Tedious and painstaking • Complex theoretical analysis • Unable to detect residual micro-stresses Measurements methods
Semi-Destructives (Jurcius and Valiulis, 2013) • Hole-drilling method Non-destructives (Jurcius and Valiulis, 2013) • X-ray diffraction method ("lattices strains and changes in the spacing between crystallographic lattice planes") • Neutron diffraction method • Ultrasonic method ("Changes in the velocities of ultrasonic waves due to stress") Measurements methods
Jubb and Philips (1975) - Intercorrelation of Structural Stability, Stiffness, Residual Stress and Natural Frequency • Frequency variations due to residual stress • Possibility to use frequencies measurements to access residual stress results From the beginning - Genesis
Kaldas and Dickinson (1981) - Flexural vibration of welded rectangular plates • Theoretical approaches to determine natural frequencies and the modes • Semi-empiric and analytic models From the beginning - Genesis
Are there really possibility to access residual stress by vibration measurements? If it is possible… • Cost • Facility New horizon
Yang et al (2005), Bezerra (2006), Bezerra et al (2008), Charette (2011), Hafiti et al (2014), Varsak et al (2014), Zhang and Kan (2015), Macanhan (2016) • Specific objectives How do they do it? New horizon
Macanhan (2016), Leal (2015), Damandi et al (2014), Barban (2014), Capriccioli (2009) - Utilizaram MEF Simulations
Simulations - Results Thermal Structural
Simulations - Results Without Stress Stressed
Simulations - Results 352.97 Hz 434.01 Hz 951.55 Hz 974.68 Hz 1502.2 Hz 1643.9 Hz 333.05 Hz 384.91 Hz 881.56 Hz 939.36 Hz 1483.8 Hz 1564.9 Hz Without Stress Stressed
Easy to obtain the results by FEA. But …., it must be compared with practical results to ensure. There are many conclusion about the frequencies variations, because each author made its own research with specific objectives Conclusions
BEZERRA, A.C.; VIEIRA, L.C.; RADE, D.A.; SCOTTI, A. On the Influence of Welding Residual Stress on Dynamic Behavior of Structures. Shock and Vibration, Vol 15, 447-458, 2008. BEZERRA, A.C. Simulação numérica da soldagem com aplicação à caracterização do comportamento dinâmico de estruturas soldadas. 2006. 138 f. Tese (Doutorado em Engenharia Mecânica) - Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia. CAPRICCIOLI, A.; FROSI, P. Multipurpose ANSYS FE procedure for welding processes simulation. Fusion Engineering and Design, 2009. doi:10.1016/j.fusengdes.2009.01.039 CHARETTE, O. Effet des contraintes résiduelles sur les parametres modaux dans les structures soudées. 2011. 249 f. Mémoire (Maîtrise em Génie Mécanique) – École de Technologie Supérieure, Université du Quebec, Montreal. DARMANDI, D.; NORISH, J.; KIET-TIEU, A. Analytic and Finite Element Solutions for Temperature Profiles in Welding using Varied Heat Source Models. World Academy of Science, Engineering and Technology, 81 (N/A), 154-162, 2011. DARMANDI, D.; NORISH, J.; KIET-TIEU, A. A validated thermo mechanical FEM model of bead-on-plate welding. International Journal of Materials and Product Technology, 48 (1-4), 146-166, 2014. GOLDAK, J., CHAKRAVARTI, A., BIBBY M. A new element model for welding heat sources. Metalurgical Transactions B, Volume 15B, 299-305, Jun 1984. HAFITI, M.M.; FIRDAUS, M.H.; RAZLAN, A.Y. Modal Analisis of Dissimilar Plate Metal Joining With Different Thickness Using MIG Welding. International Journal of Automotive and Mechanical Engineering, Vol. 9, 1723-1733, Jan 2014. doi:10.15282/ijame.9.2013.21.0143 JUBB, J.E.M. and Philips, I.G. Interrelation ofStructural Stability, Stifness, Residual Stress and Natural Frequency. Journal of Sound and Vibration, Vol 39, 121-134, 1975. JURCIUS, A.; VALIULIS, A.V. Searching for residual stress measurement methods for structural steel components. World Transactions on Engineering and Technology Education, Vol.11, No.4, 424-427, 2013. KALDAS, M.M; DICKINSON, S.M., The Flexural Vibration of Welded Rectangular Plates. Journal of Sound and Vibration, Vol 75, 163-178, 1981. KALDAS, M.M; DICKINSON, S.M., Vibration and Buckling Calculations of Rectangular Plates Subject to Complicated In-plane Stress Distribution by Using Numerial Integration in a Rayleigh-Ritz Analisys. Journal of Sound and Vibration, Vol 75, 151-162, 1981. KATHARI, N.; REDDY, K.R.; KALIAN, J.B. A Critical Comparative Study of Welding Simulations Using FEA. International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, Issue 6, June 2016. doi:10.15680/IJIRSET.2015.0506243 LEE, T.H.; CHEN, C.T. Numerical and Experimental Investigation into Effect of Temperature Field on Sensitization of AISI 304 in Butt Welds Fabricated by Gas Tungsten Arc Welding. Materials Transactions, Volume 52, No. 7, 1506-1514, 2011. LEE, T.H.; CHEN, C.T. Predicting Effect of Temperature Field on Sensitization of Alloy 690 Weldments. Materials Transactions, Volume 52, No. 9, 1824-1831, 2011. LINDGREN, L-E; Finite Element Modeling and Simulation of Welding Part 1: Increased Complexity. Journal of Thermal Stresses, Volume 24, 141-192, 2001. LINDGREN, L-E; Finite Element Modeling and Simulation of Welding Part 2: Improved Materials Modeling. Journal of Thermal Stresses, Volume 24, 195-231, 2001. LINDGREN, L-E; Finite Element Modeling and Simulation of Welding Part 3: Efficiency and Integration. Journal of Thermal Stresses, Volume 24, 305-334, 2001. MARQUES, P.V.; MONDONESI, P.J.; BRACARENSE, A.Q. Soldagem Fundamentos e Tecnologia. 2ª Ed., Editora UFMG, 2007. MASUBUCHI, K. Analisis of Welded Structures, Pergamon Press, 1980. NUNES, A.C. An extended Rosenthal weld model. Welding Journal Research Supplements, 165-170, Jun 1983. ROSENTHAL, D. The theory of moving sources of heat and its application to metal treatments. American Society of Mechanical Engineers, Volume 43, 849-866, November 1946. VAISAK, V.; ISSAC, G.C.; JOY VARGHESE, V.M. Effect of Welding Residual Stress on the Natural Frequency of Structures. International Journal of Innovative Research in Advanced Engineering, Vol. 1, issue 10, 2014. YANG, Y.P.; JUNG, G.; YANCEY, R. Finite Element Modeling of Vibration Stress Relief after Welding. The Vibratory Stress Relief Library. May 2005. ZHANG, X.; KAN, J. Influence of Welding on Modal Parameters of Stump Cutter Shaft. International Journal of Simulation, Systems, Science & Technology, Vol. 16, Number 2, Apr 2015. doi: 10.5013/IJSSST.a.16.02.15 references