1 / 59

New Resonances at Belle

Experimental environment D sJ ’s and their properties X(3872)... ...and also Y(3940) cc recoil spectrum pentaquarks? Conclusion. New Resonances at Belle. B. Golob University of Ljubljana, Slovenia Belle Collaboration.

osborn
Download Presentation

New Resonances at Belle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Experimental environment • DsJ’s and their properties • X(3872)... • ...and also Y(3940) • cc recoil spectrum • pentaquarks? • Conclusion New Resonances at Belle B. Golob University of Ljubljana, Slovenia Belle Collaboration B. Golob, Belle Cracow Epiphany Conference, 2005

  2. Experimental environment Mt. Tsukuba e- KEKB B Belle Υ(4s) ~1 km in diameter > 900 pb-1/day (~1 M BB/day) e+ Integrated luminosity ∫Ldt = 255 fb-1 on reson. 30 fb-1 off reson. ~280 M BB B Oct ‘04 May ‘99 KEKB asymmetric B factory Υ(4s) B. Golob, Belle Cracow Epiphany Conference, 2005

  3. Experimental environment Central Drift Chamber e+ 3.5 GeV s(pt)/pt= 0.3% √pt2+1 3(4) layer Si vtx det. e- 8 GeV combined particle ID e(K±)~85% e(p±→K±)<~10% @ p<3.5 GeV/c Aerogel Cherenkov Counter (n=1.015- 1.030) m and KL identification (14/15 lyrs RPC+Fe) 1.5T SC solenoid EM Calorimeter CsI (16X0) B. Golob, Belle Cracow Epiphany Conference, 2005

  4. B ECM/2 signal ECM/2 U(4s) e- e+ signal B B ∑ pi, ∑ Ei continuum Experimental environment Off reson. data: continuum only On reson. data: BB (spherical) separated from continuum (jet shaped) on basis of topological variables e.g. angle between B direction and beam axis B. Golob, Belle Cracow Epiphany Conference, 2005

  5. DsJ states Production in continuum DsJ+(2460)→Ds+g DsJ*(2317)+→Ds+p0 DsJ+(2460)→Ds*+p0 3.4 3.0 Mass (GeV) 2.6 Ds*+ 2.2 Ds+ 1.8 86.9 fb-1,PRL92,012002(2004) M(DsJ(2317))=2317.2±0.5±0.9 MeV M(DsJ(2460))=2456.5±1.3±1.3 MeV Masses lower than predicted in potential models; Widths consistent with zero B. Golob, Belle Cracow Epiphany Conference, 2005

  6. DsJ states Production in B decays B → DDsJ Helicity angle: Ds DsJ B D q DsJ*(2317)+ →Ds+p0 g,p0 J=1 DsJ(2460)+ →Ds*+p0 DsJ(2460)+ →Ds+g J=1 J=2 J=0 275M BB,BELLE-CONF-0461 DsJ*(2317)+→Ds+p0 DsJ(2460)+→Ds+g Data agree with JP=0+ (DsJ(2317)) and 1+ (DsJ(2460)) Br(B0→D-DsJ*(2317)+)=(10.3±2.2±3.1)x10-4 B. Golob, Belle Cracow Epiphany Conference, 2005

  7. First observation of B0→DsJ*-K+ DsJ states M(Dsp0)-M(Ds) DE 6.8 s signif. 0.2 0.3 0.4 0.5 0.6 (GeV) -0.10 0 0.10 (GeV) c s b d u K+ Br(B0→DsJ*(2317)-K+)∙Br(DsJ*(2317)-→Ds-p0) W s Br(B0→Ds-K+) B0 d 152M BB,hep-ex/0409026 Br(B0→D-DsJ*(2317)+)∙Br(DsJ*(2317)+→Ds+p0) DsJ Br(B0→D-Ds+) d DsJ*(2317)-→Ds-p0 (Ds→fp,K*K,KSK) Br(B0→DsJ(2317)-K+)∙ Br(DsJ(2317)-→Ds-p0)= (5.3 ± 1.4± 0.7 ± 1.4)x10-5 4-quark content? <2.5x10-5 @90% CL <0.94x10-5 <0.40x10-5 B→DsJ(2317)p- B→DsJ(2460)K+ B→DsJ(2460)p- = 1.8 ± 0.6 = 0.13 ± 0.05 B. Golob, Belle Cracow Epiphany Conference, 2005

  8. Observed by Belle with 152M BB B± → K± p+p-J/y l+l- How about with 275M BB? 152M BB, PRL91,262001 (2003) 275M BB,S.Olsen,GHP’04 X(3872) Calculate Mbc in 5 MeV bins ofM(p+p-J/y) M(p+p-l+l-)-M(l+l-) 3865 MeV 48.6±7.8 evts. (>10s) M=3872.4 ±0.7 MeV 3870 MeV no. of B’s in bins of M(p+p-J/y) 3875 MeV M(p+p-l+l-) B. Golob, Belle Cracow Epiphany Conference, 2005

  9. B± → K± p+p- p0 J/y Mbc andDE in 25 MeV bins of M(p+p-p0) X(3872) -0.1 0.1 5.20 5.25 5.30 Mbc DE M(p+p-p0J/y)= M(X)± 3s no. of B’s in bins ofM(p+p-p0) 13.1±4.2 evts.(6.4s) M(p+p-p0)>750 MeV consistent with 0 First observation of decay mode other than p+p-J/y; subthreshold decay to wJ/y (expected for DD* molecule) C(X(3872))=+1 B. Golob, Belle Cracow Epiphany Conference, 2005

  10. Dalitz plot for B→ KwJ/y Y(3940) B→ Kp+p- p0 J/y B± → K* J/y; K*→ K± w Events in DE, Mbc signal region resonant structure? M2(J/yw) M(p+p-p0J/y) B→ KwJ/y M(p+p-p0) M2(Kw) For these B→ KwJ/y plot Mbc, DE in bins ofM(wJ/y) B. Golob, Belle Cracow Epiphany Conference, 2005

  11. B± → K± wJ/y No. of B’s in bins of M(wJ/y) 275M BB, hep-ex/0408126 Y(3940) 40 MeV binsM(wJ/y) 3897 MeV 3937 MeV 3977 MeV large deviations from phase space M(Y)=3943±11±13 MeV G=87±22±26 MeV 58 ± 11 evts. Fit with added BW (8.1s) Relatively large signal at lowM(wJ/y) Br(B→YK)Br(Y→wJ/y)= (7.1±1.3±3.1)x10-5 B. Golob, Belle Cracow Epiphany Conference, 2005

  12. cc recoil spectrum X e- e+ J/y hc cc0 hc(2s) well established method(e.g. double cc production) Reconstruct J/y →l+l- Calculate recoil mass (mass of X): 285 fb-1,T.Ziegler,GHP’04 new resonance N=148 ± 33 (4.5 s) M=3940 ± 11 MeV Reconstruction of additional D or D* besideJ/y→ - new resonance decays to DD*; - not seen in J/y w probably not Y(3940) confirmation of hc(2s) after 1st observation by Belle B. Golob, Belle Cracow Epiphany Conference, 2005

  13. Pentaquark searches M(pK-) y[cm] L(1520) M(pKS) x[cm] (KN+(1540)X) (KN(1520)X) < 2%(90%CL) 155M BB,hep-ex/0411005 Searches in decays,“high energy” (charm baryon,B) Searches in secondary interactions,“low energy” select pK secondary vtx detector “tomography”: M(pK-)fit with D-wave BW and treshold funct.; L parameters in agreement with PDG M(pKS) fit with 3rd order poly.and narrow sig.(2 MeV) at different m assuming Br(+→pKS)=25% B. Golob, Belle Cracow Epiphany Conference, 2005

  14. Pentaquark searches B0  p pKS B0  p+ D(*)-p B+  p pK+ B0 pD0p B0  p+D-p 155M BB,hep-ex/0411005 B decays Qc0 Q(1540)+ Qc*+ Q*(1600)++ 303 ±21 evts. M(Qc0)=3099 MeV(H1) s=3.5 MeV (det. resol.) @90% CL B. Golob, Belle Cracow Epiphany Conference, 2005

  15. KEKB is also a great source of charm& cc states • Some expected, mainly unexpected/puzzling observations/discoveries D**broad states PRD69,112002 Y(3940) hep-ex/0408126 DsJ properties BELLE-CONF-0461 hep-ex/0409026 hc(2s) PRL89,102001 PRD70,071102 PQ searches hep-ex/0411005 X(3872)→ wJ/y S.Olsen,GHP’04 Sc(2800) hep-ex/0412069 resonance in cc recoil T.Ziegler,GHP’04 Lc+ p structure hep-ex/0409005 Conclusions range of questions: understanding all properties as expected? why such properties? what are they? will be addressed as more statisticsis collected B. Golob, Belle Cracow Epiphany Conference, 2005

  16. PQbackup

  17. Pentaquark searches backup slide Searches in decays,“high energy” charm baryon decays, B decays Searches in secondary inter.,“low energy” S(1670)+ Xc+ Q(1540)+ 131 fb-1 Lc+ → p Ks Ks M(pKSKS) M(pKS) charm baryon decays Lc+ → pK+ K- Q*(1600)++ M(pK+) M(pK+K-) B. Golob, Belle Cracow Epiphany Conference, 2005

  18. Pentaquark searches backup slide X3/2(1862)-- Xc0 → X-p- p+p+ M(X-p-) M(X-p- p+p+) X3/2(2320)+ charm baryon decays M(X-p+p+) B. Golob, Belle Cracow Epiphany Conference, 2005

  19. Pentaquark searches M(pK-) L(1520) M(pKS) (KN+(1540)X) (KN(1520)X) < 2% 155M BB,hep-ex/0411005 backup slide Searches in sec. inter. select pK secondary vtx detector “tomography”: M(pK-)fit with D-wave BW and treshold funct.; L parameters in agreement with PDG y[cm] Q(1540)+ M(pKS) fit with 3rd order poly. and narrow sig. (2 MeV) at different m x[cm] @90% CL assuming Br(+→pKS)=25% m B. Golob, Belle Cracow Epiphany Conference, 2005

  20. Pentaquark searches L(1520) p p formation p(pK-)~500 MeV K- K- L(1520) p p production majority K- K- assuming Br(+→pKS)=25% Br((1520)→pK-)= 0.5 Br((1520)X→NK) ratio of e from MC (KN+(1540)X) (KN(1520)X) < 2%(90%CL) backup slide L(1520) spectrum (fit to M(pK-) in mom. bins formation p non-zero strangeness most pK vtx produced by strange particles vtx with addit. track distance pK- vtx – next track distance pK- vtx – next K+ cm B. Golob, Belle Cracow Epiphany Conference, 2005

  21. DsJ backup

  22. Production in continuum DsJ states DsJ+(2460)→Ds+g DsJ+(2317)→Ds+p0 DsJ+(2460)→Ds*+p0 Ds*+(2112) also Ds+(2460)→ Ds*+p0; glost (MC) Ds* side band Ds side band Ds side band p0 side band Ds+(2317)→Ds+p0 +random g backup slide reconstruction: Ds→fp, f→K+K- Ds*→ Dsg p(DsJ)>3.5 GeV M(DsJ(2317))=2317.2±0.5±0.9 MeV M(DsJ(2460))=2456.5±1.3±1.3 MeV G(DsJ(2317))<4.6 MeV @90% CL G(DsJ(2460))<5.5 MeV @90% CL Br(DsJ(2460)→Ds+g)/Br(DsJ(2460)→Ds*+p0)=0.55±0.13±0.08 B. Golob, Belle Cracow Epiphany Conference, 2005

  23. Production in B decays DsJ states backup slide B(0,±)→ D(0,±)DsJ DsJ+(2317)→ Ds+p0 DsJ+(2460)→ Ds*+p0 DsJ+(2460)→ Ds+g DE side band M(DsJ) side band All events in Mbc signal region Reconstruction D0→ K+p-,K+p-p-p+,K+p-p0; D-→ K+p-p- Masses:2320.0±1.1±2.0and2459.5±0.9±2.0MeV; B. Golob, Belle Cracow Epiphany Conference, 2005

  24. Production in B decays DsJ states backup slide B(0,±)→ D*(0,±)DsJ DsJ+(2317)→ Ds+p0 DsJ+(2460)→ Ds*+p0 DsJ+(2460)→ Ds+g DE side band M(DsJ) side band All events in Mbc signal region B. Golob, Belle Cracow Epiphany Conference, 2005

  25. Production in B decays DsJ states backup slide Decay channel Br[10-4] signif. B  D DsJ(2317) [Dsp0] 10.1  1.5  3.0 9.5s B  D DsJ(2317) [Ds*g] 4.0-1.4+1.5 (<8.4) 3.5s B  D DsJ(2460) [Ds*p0] 14.8-2.5+2.8  4.4 8.6s B  D DsJ(2460) [Dsg] 6.4  0.8  1.9 11s B  D DsJ(2460) [Ds*g] 2.6-1.0+1.1 (<5.7) 3.0s B  D DsJ(2460) [Dsp+p-] 1.0-0.4+0.5 (<2.3) 2.6s B  D DsJ(2460) [Dsp0] 0.2-0.5+0.7 (<1.7) -- B  D* DsJ(2317) [Dsp0] 3.1-1.7+2.1 (<8.5) 2.0s B  D* DsJ(2460) [Ds*p0] 28.7-6.4+7.4  8.6 6.9s B  D* DsJ(2460) [Dsg] 12.7-2.0+2.2  3.8 10s Br(DsJ(2460)→Ds+g)/Br(DsJ(2460)→Ds*+p0)=0.43±0.08±0.04 Br’s from DE fits in Mbc and M(DsJ) signal region Largest syst. uncertainty from p0 eff. and D branching fractions B. Golob, Belle Cracow Epiphany Conference, 2005

  26. DsJ states First observation of B0→DsJ+K- backup slide W exchange DsJ(2317) K- 16.6±4.4 evts. DsJ(2317) p+ FSI DsJ(2460) K- tree,4 quark content DsJ(2460) p+ B. Golob, Belle Cracow Epiphany Conference, 2005

  27. DsJ states First observation of B0→DsJ+K- backup slide Br from fit to M(Dsp0)-M(Ds) in signal region of DE and Mbc Width fixed from MC, peak position allowed to float Cross checks: Br obtained by fits to DE or Mbc in good agreement; Width and peak position allowed to float – good agreement with MC; Random combinations of true DsJ and K checked by DE and Mbc side bands – less than 1 event expected; Main cont. to syst. uncertainty p0, g eff.; DsJ and K combinatorics c2=1.44 c2=4.72 B. Golob, Belle Cracow Epiphany Conference, 2005

  28. DsJ states First observation of B0→DsJ+K- (DsJ(2460)→Dsg) No significant signal observed in B→DsJ(2317)p- B→DsJ(2460)K+ B→DsJ(2460)p- <2.5x10-5 <0.94x10-5 <0.40x10-5@90% CL backup slide Br(B0→DsJ(2317)+K-)x Br(DsJ(2317)+→Ds+p0)= (5.3+1.4± 0.7 ± 1.4)x10-5 Br(B0→Ds+K-)=(2.93±0.55±0.79)x10-5 Br(B0→DsJ(2317)+K-) of same order; Br(B0→DsJ(2460)+K-) twice smaller (assuming Br(DsJ(2460)→Dsg)~30%) Br(B0→DsJ(2317)+K-)∙ Br(DsJ(2317)+→Ds+p0)=(5.3 ± 1.4± 0.7 ±1.4)x10-5 Br(B0→Ds+K-)=(2.93 ± 0.55 ±0.79)x10-5 Br(B→D-DsJ+(2317))∙Br(DsJ(2317)+→Ds+p0)=(10.3 ± 2.2 ± 1.7±2.6)x10-4 Br(B→D-Ds+)=(8.0 ± 2.2 ±2.0)x10-5 uncertainty due to Ds Br’s; cancels in the ratio B. Golob, Belle Cracow Epiphany Conference, 2005 B. Golob, Belle Cracow Epiphany Conference, 2005

  29. D** backup

  30. Potential model prediction for cu: D** states 65M BB,PRD69,112002 backup slide B+→D-p+p+ ~1100 evts. D side band B+→D*-p+p+ D0*, D1’ broad states D1, D2* narrow states ~550 evts. Modes used: D0→K-p+, K-p+p+p- D+→K-p+p+ D*+→ D0p+ Dalitz plot analysis B. Golob, Belle Cracow Epiphany Conference, 2005

  31. D** states B+→ D-p+p+ B+→ D*-p+p+ backup slide M(Dp)min M(Dp)max D0* proj. of 4D fit D1’ proj. of 2D fit D2* D1 D2* Dv*,Bv* M(Dp)min M(Dp)min DE side band bckg. subtracted B. Golob, Belle Cracow Epiphany Conference, 2005

  32. D** states backup slide Fit to Dpp distrib.: Unbinned max. lik. fit to Dalitz plot; bckg. from DE side band Dalitz plot; D1 or D1’ (JP=1+) cannot contribute to Dp in Dpp final state; signal described as D0* (JP=0+) +D2*(JP=2+) + virtual Dv* or Bv*+constant (non-resonant) term M(D*+) < M(D+p-) → virtual Dv* similarly B → Bv*p, Bv*→ Dp inclusion of Dv*, Bv* significantly improves the fit negligible contribution Each state relativistic BW, q2 dependent G, specific ang. dependence (angle between p from B and p from D** in D** frame; Blatt-Weiskopf param. of B→D**, D**→D form factors; D** resonance parameters, amplitudes and relative phases free param. of fit B. Golob, Belle Cracow Epiphany Conference, 2005

  33. D** states backup slide M(D0*)= 2308±17±15±28 MeV; G(D0*)= 276±21±18±60 MeV; M(D2*)= 2461.6±2.1±0.5±3.3 MeV; G(D2*)=45.6±4.4±6.5±1.6 MeV; larger than WA (23±5 MeV), but no interf. effects taken into account; Focus exp. 30.5±4.2 MeV errors: stat. syst. model varying selection; track, PID eff.; hep-ex/0011044 = 0 for default fit = 240-360 if no D0* or JP=1-,2+ fits with Dv*,Bv*,constant Br(B- → D0*p-)Br(D0*→D+p-)=(6.1±0.6±0.9±1.6)x10-4 B. Golob, Belle Cracow Epiphany Conference, 2005

  34. D** states backup slide Fit to D*pp distrib.: Unbinned max. lik. fit in 4D space; bckg. from DE side band Dalitz plot; D0* (JP=0+) cannot contribute to D*p in D*pp final state; signal described as D1 (JP=1+) +D2*(JP=2+) + D1’(JP=1+) virtual Dv* or Bv*+constant (non-resonant) term; D2* parameters fixed to values from Dpp final state Since D* vector, two more angles for final state descr.; angle between p from D** and D*, angle between p from D* and B → D*pp plane; additional mixing angle between JP=1+ states; B. Golob, Belle Cracow Epiphany Conference, 2005

  35. D** states backup slide M(D1’)= 2427±26±20±15 MeV; G(D1’)= 384±90±24±70 MeV; M(D1)= 2421.4±1.5±0.4±0.8 MeV; G(D1)=23.7±2.7±0.2±0.4 MeV; in agreement with WA = 0 for default fit = 100-170 if no D1’ or JP=1-,2+ Br(B- → D1’p-)Br(D1’→D*+p-)=(5.0±0.4±1.0±0.4)x10-4 narrow reson. (D1,D2*) comprise 36±6% of Dpp final state 63±6% of D*pp final state QCD sum rule: narrow reson. dominate D(*)pp state LEP: B→D(*)pln also not dominated by narrow reson. B. Golob, Belle Cracow Epiphany Conference, 2005

  36. X(3872) backup

  37. X(3872) cc spectrum backup slide hc” cc1’ y2 y3 hc’ MD+MD* hc2 y” 2MD y’ hc’ cc2 G parities: hc”+1 cc1’+1 hc2+1 hc’-1 y2-1 y3 -1 p+p-J/y -1 G=(-1)L+S+I hc cc1 cc0 J/y hc B. Golob, Belle Cracow Epiphany Conference, 2005

  38. X(3872) Search for X → gcc1 Search for X → gcc2 gJ/y gJ/y Mbc backup slide y’ M(gcc2) in y’ region M(gcc2) in X region B→ KX Mbc signal region X M(gcc1) Width of 3D3 (y3) state to gcc2 expected to be lager (factor at least 2) than to p+p-J/y Width of 3D2 (y2) state to gcc1 expected to be lager (factor 2-3) than to p+p-J/y B. Golob, Belle Cracow Epiphany Conference, 2005

  39. X(3872) 3D3 (y3) state could decay to DD through L=3 B±→ DDK± M(DD) backup slide 23P1 state (cc1’) above DD* treshold; if below,G(gJ/y) probably larger thanG(p+p-J/y) y’(3770) B±→ gJ/yK± in Mbc and DE signal region M(gJ/y)in X region M(gJ/y) in cc1 region Mbc Mbc 7.7±3.6 evts. B. Golob, Belle Cracow Epiphany Conference, 2005

  40. X(3872) hc” hc’ cc1’ y2 hc2 y3 p+ p- M too low; G too small K B X angular dist’n rules out 1+- q J/y M too low; G(gJ/y) too small G(gcc1) too small; mpp wrong pp hc should dominate ppJ/y X(3872) none of expected cc states M(p+p-) in p+p-J/y close to r; decay to wJ/y ~ ½ of p+p-J/y; arguments for DD* molecule interpret. E.S.Swanson,PLB588,189 G( gcc2 & DD) too small; mpp wrong backup slide Angular distrib. for 21P1 (hc’) top+p-J/y expected forhc’ X |cosq| c2/nof=75/9 B. Golob, Belle Cracow Epiphany Conference, 2005

  41. X(3872) ccuu=1/√2 cc [1/√2 (uu+dd)+1/√2 (uu-dd)] =1/√2(|I=0>+|I=1>) backup slide M(pp) for B→XK, X→ppJ/y X→J/y r (as indicated bym(pp)) I(r)=1, I(w)=0, I(J/y)=0 → X decays break isospin symmetry DE, Mbc side band B. Golob, Belle Cracow Epiphany Conference, 2005

  42. B± → K± p+p-p0 J/y X(3872) signal v iii iv ii i Side regions B± → K±wJ/y wband M(p+p-p0J/y) Xband fit Mbc and DE M(p+p-p0) DEin 25 MeV bins of M(p+p-p0) Possible contr.K±wJ/y0.75 ± 0.14 B. Golob, Belle Cracow Epiphany Conference, 2005

  43. B± → K± p+p-p0 J/y X(3872) backup slide B± → K1(1270)J/y 4.3±6.2 region I M(X)-M(3p) signal region region III 6.4±5.6 Simultaneous fit to DE and Mbc distrib. for M(p+p-p0)>750 MeV non-resonant, peaking bckg. 1.3±1.0 (scaled to sig. area) signific.: main syst. uncertainty: contrib. of peaking bckg. and K±wJ/y: -20%; M(3p)>750 MeV: +25% 6.4s (5.0s if 2 events peaking backg.) B. Golob, Belle Cracow Epiphany Conference, 2005

  44. Y(3940) backup

  45. Y(3940) backup slide B→ KwJ/y DE in 40 MeV bins ofM(wJ/y) |DE| < 0.03 GeV, 5.2725< Mbc< 5.2875 GeV all fits consistent yield within stat. error (~200±20) B yield inM(wJ/y) bins for B→ KwJ/y phase space MC Yields determined from simultaneous DE and Mbc fits (constrained to be equal); peak position and width from fits to integrated distrib. Fit with f(M)=Aq*(M) q*(M): mom. of daughter part. in wJ/y frame B. Golob, Belle Cracow Epiphany Conference, 2005

  46. Nw=74±14 Y(3940) backup slide B→ KwJ/y M(p+p-p0) DE, Mbc signal region 20% variation included in syst. error. Ks,K± yields consistent with acc. ratio. acceptance K± KS M(wJ/y) M(wJ/y)<3997 MeV (first 3 bins in M(wJ/y)); no resonance in Kw in this M(wJ/y) region M(Kw) DE, Mbc side band: Nw=14±10(non-w 3p) fraction of true w in signal: 0.90±0.18 (in syst. error) B. Golob, Belle Cracow Epiphany Conference, 2005

  47. Y(3940) backup slide B→ KwJ/y Main syst. uncertainty: fit using S-wave BW or Lorentzian shape for resonance; linear or 3rd order polynomial for bckg.; largest deviation +38% possible non-w 3p contribution; -28% Significance: integral of fitted phase space in first 3 bins of M(wJ/y) 16.8±1.4 total number of events: 55.6 significance > 9s > 8s B. Golob, Belle Cracow Epiphany Conference, 2005

  48. cc recoil backup

  49. cc recoil spectrum X e- e+ J/y backup slide Calculate recoil mass (mass of X): Reconstruct J/y →l+l- calibrate withe+e-→(2S)  (2S) → J/y p+p- <1% bckg. Shift of Mrec againts J/y with same momentum bias found Mrec(J/) < 3 MeV/c for Mrec(J/)  3 GeV/c fitted with MC with free Mrec2 off-set M2rec=0.0100.009 GeV2/c4(data/MC); introduce momentum scale bias in MC to reproduce M2rec B. Golob, Belle Cracow Epiphany Conference, 2005

More Related