270 likes | 588 Views
X-ray Spectroscopy of Cool & Warm Absorbers With Chandra: From Oxygen to iron. Norbert S. Schulz. X-ray Absorption Processes. 2. Benefits, Challenges & Future of High Resolution X-ray Absorption Spectroscopy . 3. Cool & Warm X-ray Absorbers:.
E N D
X-ray Spectroscopy of Cool & Warm Absorbers With Chandra: From Oxygen to iron Norbert S. Schulz X-ray Absorption Processes 2. Benefits, Challenges & Future of High Resolution X-ray Absorption Spectroscopy 3. Cool & Warm X-ray Absorbers: • Interstellar Media (ISMs) in Galaxies • Accreting X-ray Binaries • -Active Galactic Nuclei (AGN) X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
X-ray Absorption Processes Photoelectric Continuum Absorption X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
X-ray Absorption Processes Absorption in Cool Matter/Plasmas Photo-electric continuum absorption X-ray fluorescence Photo-electric 1s-np resonances X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
X-ray Absorption Processes New Models for ISM Absorption Juett, Wilms, Schulz & Nowak 2006 (tbnew in XSPEC) X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
X-ray Absorption Processes Absorption in Collisionally Ionized Plasmas Collisional Ionization Equilibrium kT > MK H-, He-like resonance absorption ( and Li-, B-like for Fe) Fermi's Golden Rule: Pi-f = 2p/h |<Ff| W | Fi>|2 r (Ef = Ei) X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
X-ray Absorption Processes Absorption in PhotoionizedPlasmas Warm absorber: electron temperature of illuminated matter << 106 K in contrast to a collisionally ionized gas gas with a similar level of ionization ( Halpern 1984) Ionization parameter x = Lx / ned2 C. Reynolds X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
X-ray Absorption Processes XSTAR v2.1 simulations: Log Lx ~ 37.5 [erg/s], x < 2 Kallman et al. 2004 X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
2. Benefits, Challenges & Future of High Resolution X-ray Absorption Spectroscopy Chemical evolution and recycling of matter: - accurate ccount of matter (non- radiative), - accretion dignostics, -inert cool, warm & hot absorbers in ISM/IGM Determine matter properties: optical depths: t(Z) columns densities: NZ, Nwarm, Nhot abundance: AZ composition: elements, molecules geometry: dx , dt ionization balance: x, fZ dust properties/depletion X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Curve of Growth Analysis • Evaluation of measured equivalent width: • column densities • -line oscillator strengths • -mass dynamics - linear part - flat part - sqrt part
Current Spectral Capabilies Available Spectrometers: RGS XMM-Newton Dl ~ 0.08 FWHM RGS 1 ~ 0.06 RGS 2 LETG Chandra Dl ~ 0.05 FWHM HETG Chandra Dl ~ 0.02 FWHM MEG ~ 0.01 HEG (CCD have E/dE < 60) Wavelength range (z=0): 45 A (C-K) -- 1,7 A (Fe K) Resolving power > 1000 desired Velocities > 150 km/s resolved Equivalent Widths ~ mA possible
Resolution vs. Efficiency l/Dl = 200 Aeff ~ 6000 cm2 l/Dl = 2000 Aeff ~ 1200 cm2 l/Dl = 1200 Aeff ~ 100 cm2
Critical Angle Transmission Gratings for Con-X X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Phases of Interstellar Media Phase n/[ccm] T/[K] Media Cold 30-3000 10-100 MCs, H I Warm 0.03 -0.1 < 10000 H I, H II Hot <0.005 < 10 MK SNR - (Very hot) Diffuse
Chandra HETG ISM Surveys O-K absorption Ne K absorption: Ne II, III, IX Juett et al. 2004 Juett et al. 2006 X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Chandra HETG ISM Surveys O abundance: O II, III Ne abundance: Ne II, III X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Absorption in X-ray sources Absorption in collisionally ionized plasmas: Collisional Ionization Equilibrium kT > MK H-, He-like resonance absorption ( and Li-, B-like for Fe) Resonance Absorption in the Hot ISM NeII Kb X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Future: Absorption Surveys in Galaxies Principle: backlighting with bright X-ray continua Advantage: Long-range analysis Entire Galactic plane & Halo Study all ISM phases ISM Studies in other Galaxies X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Warm absorbers in Seyfert I galaxies: Soft absorber in warm plasma: I. George X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Warm absorbers in Seyfert I galaxies: X-ray spectra of Active Galactic Nuclei MCG6-30-15, Lee et al. 2002 NGC 3783, Kaspi et al. 2002 Blustin et al. 2005 Texas Symposium 2006, Dec. 12, Melbourne, Australia
Warm Absorbers in Compact Binaries: Summary Table: X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Warm Absorbers in Compact Binaries: Summary Table: X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Hot Absorbers in Compact Binaries: Summary Table: X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Warm Absorbers in Compact Binaries: Summary Table: X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Warm Absorbers in Compact Binaries: EXO 0748+676 Cottam et al. (2003) Jimenez-Garate, Schulz, & Marshall (2003) X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Warm Absorbers in Compact Binaries: Microquasars GRO J1655-40 (Miller et al.2006a) Cyg X-1 (Marshall et al. 2001, Miller et al. 2005) Cir X-1 (Brandt & Schulz 2000) GRS 1915+105 Lee et al. 2002 H 1743-322 (Miller et al. 2006b) X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Warm Absorbers in Compact Binaries: Microquasars: the special case of Cir X-1 The X-ray binary with two faces: at low X-ray fluxes (<100 mCrab) at high X-ray fluxes (>1 Crab) Schulz et al. (2007) ApJ, submitted Schulz & Brandt (2002) low ionization parameter: log x = 2 -- 3 no blueshifts cold, lukewarm, warm absorber present high ionization parameter: log x > 4 blueshifts: voutflow = 400 -- 2000 km/s cold and hot absorber present atol dipper microquasar X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA
Summary 1) High resolution (R > 500) X-ray spectrom,eters have opened the window for absorption spectroscopy as a powerful diagnostic in high energy astrophysics 2) Benefits: line absorption in the X-ray band cover a large range of T [104 -- 107 K], log x [0.01 -- 5], NH [1019 -- 1024 cm-2]; measure direct abundance & ionization fractions for Z = 6 -- 26 3) Detection of absorption edge structure in O, Fe, Ne; optical depth measurements for O, Ne, Mg, Si, S, Fe; first measurments of ionization fractions involving warm ISM phase 4) Detections of cool, warm, hot absorber properties in a large range of objects: ISM, IGM (WHIM), AGN, LMXBs, HMXBs 5) First detection of an active warm absorber in an accreting NS binary: Cir X-1 (see also EXO 0748-676) 6) We have met the challenge for more powerful X-ray spectrometers -- SO WHERE IS THE NEW MISSION? X-ray Grating Spectroscopy, July 12, 2007, Cambridge MA, USA