290 likes | 517 Views
Lecture 4. CMOS Inverter. References. Section 4.2,4.3,4.6 (Hodges). 5 Regions of Operations. I: N(off), P( lin ). As you increase Vin from 0 V to 1.8 V, you progress from region I to region V. Current Draw of a CMOS Inverter. Ideal Voltage Transfer Characteristics of an Inverter.
E N D
Lecture 4 CMOS Inverter
References • Section 4.2,4.3,4.6 (Hodges)
5 Regions of Operations I: N(off), P(lin) As you increase Vin from 0 V to 1.8 V, you progress from region I to region V.
Ideal Voltage Transfer Characteristics of an Inverter Large Input Range/Small Output Range →Noise Immunity. Range: the voltage interval over which the signal is either a 1 or a 0.
Practical VTC of an Inverter Gain=ΔVout/ΔVin VS is defined by Vout=Vin Not GND
Noise Margin Input of the Receiving Stage Output of the Driving Stage
Unity Gain Noise Margin Definitions NML=VIL-VOL NMH=VOH-VIH If Vin>VIL, the gain exceeds unity and the output begins to drop significantly.
General Analysis Methodology Region I: N-OFF, P-Triode Region II: IDN(Sat)=IDP(Triode)→VIL(Cumbersome to calculate analytically) Region III: IDN(Sat)=IDP(Sat)→VS(Switching voltage) Region IV: IDN(Triode)=IDP(Sat) →VIH(Cumbersome to calculate analytically) Region V: N-Triode, P-OFF
TSMC 0.18 um Example • WN/LN=200nm/200nm WP/LP=200nm/200nm
Computation of VS • See Derivation in the Handout • Assume: • 0.18 um TSMC CMOS • WN/LN=200nm/200nm;WP/LP=200nm/200nm • ECNLN=4.8V; ECPLP=1.2V • Hand Analysis using (EQ 4.15 /EQ 4.14): 0.76V • Spice: 0.748 V
VS of TSMC 0.18 um • Assume: • 0.18 um TSMC CMOS • WN/LN=200nm/200nm WP/LP=200nm/200nm
Adjust VS • Knob: • χ as defined in EQ. 4.15 • Increase WNLP/LNWP→ Decreased VS. • Decrease WNLP/LNWP→ Increased VS.
Increase WP to adjust VS • WN/LN=200nm/200nm WP/LP=200nm/200nm • WN/LN=200nm/200nm WP/LP=460nm/200nm
Noise Margin • VOH=VDD • VOL=0 V • Determine VIL and VIH from the -1 slope.
VIL • WN/LN=200nm/200nm WP/LP=460nm/200nm
VIH • WN/LN=200nm/200nm WP/LP=460nm/200nm
NM Calculation • Process: TSMC 0.18 um • WN/LN=200nm/200nm; WP/LP=460nm/200nm • VS=0.809 V • VOH=1.8 V • VOL=0 V • VIL=0.66 V • VIH=0.905V • NML=VIL-VOL=0.66 V-0V=0.66V • NMH=VOH-VIH=1.8 V-0.905V=0.895 V
Propagation Delay of CMOS Inverter 50% PropgationDealay: 0.69 ReffCL
tPHL • Δt=CLΔV/(IDS) • ΔV=VDD/2 (from VDD to VDD/2) • IDS • NMOS is in Saturation (Hand Out) • tpHL=0.69ReffnCL • tpHL=CL ΔV/(IDSAT) • Reffn=(VDD/2)/(0.69IDSAT)
tPLH • Δt=CLΔV/(IDS) • ΔV=VDD/2 (from 0 to VDD/2) • IDS • PMOS is in Saturation (Hand Out) • tpLH=0.69ReffpCL • tpLH=CLΔV/(IDSAT) • Reffp=(VDD/2)/(0.69IDSAT)
Reff Comparison for 0.18 um Process Reff: unit is Kohm/SQ RN=ReffN(LN/WN) RP=ReffP(LP/WP)
Design Example • Design Constraints: • tPHL<50 pS, tPLH<50 pS • Load Capacitor: 50 fF • Use minimum W and L to attain the specs. • Determine W/L for PMOS and NMOS • Method: • tPHL=tPLH=50 pS=0.7ReffCL • Use Reffn=12.5 KOhm/SQ and Reffp=30 KOhm/SQ • Reff=1.4 Kohm • Reff=Reffn(Ln/Wn);Reff=Reffp(Lp/Wp) • Use minimum Ln. • Wn=1.784 um; Wp=4.284 um