1 / 36

Wavelet Transforms ( WT ) -Introduction and Applications

Wavelet Transforms ( WT ) -Introduction and Applications. Presenter : Pei - Jarn Chen 2010/12/08 E.E. Department of STUT . Outline. ☆ Theory  methodology  develop history  mathematic description ( CWT & DWT) ☆ Applications

pahana
Download Presentation

Wavelet Transforms ( WT ) -Introduction and Applications

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Wavelet Transforms ( WT ) -Introduction and Applications Presenter : Pei - Jarn Chen 2010/12/08 E.E. Department of STUT .

  2. Outline • ☆ Theory  methodology  develop history  mathematic description ( CWT & DWT) • ☆ Applications • ☆ Matlab approach • ☆ Reference

  3. Introduction • Wavelet theory  Scaling  Multi-resolution analysis( MRA )  Mathematics description  Wavelet transform ( CWT & DWT )  Wavelet family

  4. Wavelet theory • Time - frequency analysis • Scaling • Heinsberg uncertainty principle Δt*Δf≧(1/4)*π

  5. Wavelet theory • Multiresolution analysis (MRA) • Multi_ scale analysis ( superposition ) dilation translation

  6. Wavelet theory • Multi_ space analysis + = Approximate space Detail space decomposition reconstruction

  7. Wavelet theory • Wavelet packet tree S A1 D1 AD2 AA2 DA2 DD2 AAA3 DAA3 ADA2 DDA3 AAD3 DAD3 ADD3 DDD3

  8. Wavelet Transform ( WT ) * Bandpass filter algorithm

  9. Wavelet Transform ( WT )

  10. Wavelet theory Develope history  1910 Haar ------------- orthogonal system  1982 Strömberg ------ first continuous wavelet  1984 Grossman & Morlet-----wavelet transform  1986 Meyer & Mallat ----multiresolution analysis & mathematics description  1987 Tchamitchian -------biorthogonal wavelets  1988 Daubechies …………..

  11. Wavelet Transform ( WT ) • Mathematics description • define j, k: scaling & translation parameters Φ: scaling function ( j=k=0, father function) Vj j, k : scaling & translation parameters : wavelet function (j=k=0, mother function) Oj

  12. Wavelet Transform ( WT ) • Refinement ( dilation ) equation Wavelet family

  13. Wavelet Transform ( WT ) • The properties of mother wavelet w t

  14. Wavelet Transform ( WT ) • Wavelets basis • compactly supported wavelets Harr Daubechies………. • not compactly supported wavelets Mexican hat function Littlewood-Paley Morlet Meyer’s B-spline………...

  15. Wavelet Transform ( WT ) • Harr (t) |()| |()| (t)

  16. Wavelet Transform ( WT ) • Meyer (t) |()| |()| (t)

  17. Wavelet Transform ( WT ) • Daubechies |()| (t) (t) |()|

  18. Wavelet Transform ( WT ) • Wavelet family

  19. Wavelet Transform ( WT ) • The technique of WT • Continuous Wavelet Transform (CWT) a: scaling b: translation C=0.2247

  20. Wavelet Transform ( WT ) • Discrete Wavelet Transform (DWT) Scaling function : Wavelet function: a= 2 j DWT CWT

  21. Applications A. 1-D 1. # A sum of sines 1. Detection breakdown points 2. Identifying pure frequency 3.The effect of wavelet on a sine 4. The level at which characteristcs * db3, level 5, DWT

  22. Applications 2.. • # Frequency breakdown • 1. Suppressing signals • 2. Detecting long_term evolution db5, level 5, DWT

  23. Applications 3. • # Color AR(3) Noise • Processing noise • 2. The relative importance • of different detail • 3. The comparative importance • D1 and A1 * db3, level 5, DWT

  24. Applications 4. # Two Proximal Discontinuties 1. Detecting breakdown points 2. Move the discontinuities closer together and further apart * db2 and db7, level 5, DWT

  25. Applications 5. • # A Triangle + A Sine + noise • Detecting long-term evolution • 2. Splitting signal components • 3. Identifying the frequency of • a sine * db5, level 6, DWT

  26. Applications 6. # A Real three-day Electrical Consumption Signal * db3, level 5, DWT

  27. Applications--Velocity dispersion( T.Onsay and A.G. Haddow, J. Acoust. Soc. Am. Vol. 95, no. 3, pp. 1441-1449, 1994) Fig .Signal_1 and signal_2 following the input of glass ball on the free end of the beam Fig. The CWT of the acceleration signal_2

  28. Applications B. 2-D ( imaging data compression, JPEG 2000)

  29. Applications

  30. Applications 1.

  31. Matlab Approach(1) Using Wavelet Packets(2) Using Matlab command and *.m

  32. Conclusion • The self -adjusting windows structure for WT provides an enhanced resolution compared to the Short Time Fourier Transform (STFT). • WT technique is not a panacea. It should be used with caution, depended by the problem itself.

  33. Reference [1]. A. Abbate, J. Koay, et. al., ‘Signal detection and noise suppression using a wavelet transform signal processor: Application to ultrasoic flaw detection’, IEEE Trans. On Ultrason., Ferroelect., and Freq.Contr.,vol. 44, no. 1, pp. 14-26, 1997. [2].B. M. Sadler, T. Pham, and L. C. Sadler,’ Optimal and wavelet-based shock wave detection and estimation’, J. Acoust. Soc. Am.,vol. 104, no.2, pp. 955- 963, 1998 [3]. T. Onsay and A. G. Haddow, ’Wavelet transform analysis of transient wave propagation a dispersive medium’, J. Acoust. Soc. Am. Vol. 95, no. 3, pp. 1441-1449, 1994 [4].E. Meyer and T. Tuthill, ‘ Bayesian classification of ultrasound signal using wavelet coefficients’, IEEE Aerospace and Electronics Conference, vol. 1, pp. 240-243, 1995 [5]. R. Polikar, L. Udpa, S. S. Udpa, and T. Taylor, ‘ Frequency invariant classification of ultrasound welding inspection signals’, IEEE Trans. On Ultrason.,Ferroelect., and Freq. Contr.,vol. 45, no. 3, p.p. 614-625, 1998 [6]. W. X. Robert, S. Siffert and J. J. Kaufman, ’ Application of wavelet analysis to ultrasound characterization of bone’, IEEE 26 Asilomar conference, vol. 12, pp. 1090-1094, 1994

  34. Reference [7]. M. Unser and A. Aldroubi, ’A review of Wavelet in Biomedical Appliocations’, IEEE Proceedings, vol. 84, no. 4 , pp.626-638, 1996 [8]. S. Mallat, ’ Wavelet tour of signal processing’, Academic Press,1998 [9]. M. R. Rao and A. S. Boparadikor, ’ Wavelet Transforms introduction to Theory and Application’ , Addison-Wesley Press, London, U.K. 1998 [10]. Wavelet Toolbox : for Use with MATLAB, 1996 [11]. M. Akay, ’ Time frequency and wavelets in biomedical signal processing’, IEEE Press, U.S.A., 1998

  35. Thank You !

More Related