1 / 50

The Compiled Works of E. J. Corey

The Compiled Works of E. J. Corey. About E. J. Corey Methods/Methodology Publication/Syntheses. About E. J. Corey. Born: In July 1928 in Methuen, Massachusetts.

parksc
Download Presentation

The Compiled Works of E. J. Corey

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Compiled Works of E. J. Corey • About E. J. Corey • Methods/Methodology • Publication/Syntheses

  2. About E. J. Corey • Born: In July 1928 in Methuen, Massachusetts. • Education: Graduated from Lawrence Public High School at the age of sixteen and entered the Massachusetts Institute of Technology, just a few weeks later, in July, 1945. MIT teachers  including Arthur C. Cope, John C. Sheehan, John D. Roberts and Charles Gardner Swain. In 1950,  joined the University of Illinois at Urbana-Champaign(伊利诺伊香槟分校) as an Instructor in Chemistry under the distinguished chemists Roger Adams and Carl S. Marvel.

  3. Notable students: Hisashi Yamamoto, J. William Suggs About E. J. Corey RyojiNoyori 野依良治 (2001 Nobel) Phil S. Baran William L. Jorgensen David E. Cane K. C. Nicolaou Brian M. Stoltz

  4. Awards : ACS Award in Pure Chemistry (1960) Chevreul Medal (1964) Fritzsche Award (1967) Intra-Science Foundation Award (1967) Harrison Howe Award (1970) Centenary Medal (1971) Ciba Foundation Medal (1972) Linus Pauling Award (1973) Dickson Prize (1973) George Ledlie Prize (1973) Remsen Award (1974) Arthur C. Cope Award (1976) Buchman Memorial Award (1978) Franklin Medal (1978) Scientific Achievement Award Medal (1979) J. G. Kirkwood Award (1980) C. S. Hamilton Award (1980) About E. J. Corey

  5. About E. J. Corey • Awards : Chemical Pioneer Award (1981) Lewis S. Rosenstiel Award (1981) Paul Karrer Gold Medal (1982) Tetrahedron Prize (1983) Willard Gibbs Award (1984) Paracelsus Award (1984) Madison Marshall Award (1985) V.D. Mattia Award (1985) Wolf Prize in Chemistry (1986) Silliman Award (1986) Robert Robinson Medal (1988) National Medal of Science (1988) Japan Prize (1989) Janot Medal (1990) Nobel Prize in Chemistry (1990) : Retrosynthetic analysis Roger Adams Award (1993) ForMemRS (1998) Priestley Medal (2004)

  6. Woodward–Hoffmann rules • Priestley Medal in 2004 • Corey's claim and contribution were publicly rebutted by Roald Hoffmann in the journal AngewandteChemie

  7. Methods • PCC (pyridiniumchlorochromate) Tetrahedron Lett. 1975 31 (31): 2647-2650 doi:10.1016/s0040-4039(00)75204-x Tetrahedron Lett. 1978 19 (28): 2461-2464 doi:10.1016/S0040-4039(01)94800-2

  8. Methods JACS 1972 94 (17): 6190–6191  doi:10.1021/ja00772a043 • TBS-, TIPS-, MEM- Tetrahedron Lett. 1976 17 (11): 809–812 doi:10.1016/s0040-4039(00)92890-9

  9. Methods Angew. Chem. Int. Ed. 1965  4 (12): 1077–1078  doi:10.1002/anie.196510771 除疟霉素 JACS.1982 104 (24): 6818–6820  doi:10.1021/ja00388a074 Methods

  10. Methodology • Corey-Chaykovskyepoxidation and cyclopropanation 1962

  11. Methodology • Corey-Chaykovskyepoxidation and cyclopropanation • Mechanism:

  12. Methodology • Corey-Chaykovskyepoxidation and cyclopropanation Synthetic Applications:

  13. Methodology • Corey-Chaykovskyepoxidation and cyclopropanation Synthetic Applications:

  14. Methodology • Corey-Winter olefination 1963

  15. Methodology • Corey-Winter olefination Mechanism:

  16. Methodology • Corey-Winter olefination Synthetic Applications:

  17. Methodology • Corey-Winter olefination Synthetic Applications:

  18. Methodology • Corey-Fuchs alkyne synthesis 1972

  19. Methodology • Corey-Fuchs alkyne synthesis Mechanism:

  20. Methodology • Corey-Fuchs alkyne synthesis Synthetic Applications:

  21. Methodology • Corey-Fuchs alkyne synthesis Synthetic Applications:

  22. Methodology • Corey-Kim oxidation 1972

  23. Methodology • Corey-Kim oxidation Mechanism:

  24. Methodology • Corey-Kim oxidation Synthetic Applications:

  25. Methodology • Corey-Kim oxidation 1972 Synthetic Applications:

  26. Methodology • Corey-Nicolaoumacrolactonization 1974

  27. Methodology • Corey-Nicolaoumacrolactonization Mechanism:

  28. Methodology • Corey-Nicolaoumacrolactonization Synthetic Applications:

  29. Methodology • Corey-Nicolaoumacrolactonization Synthetic Applications:

  30. Methodology • Corey-Bakshi-Shibata reduction(CBS reduction) 1981 • The advantages of the CBS catalyst: • ease of preparation • air and moisture stability • short reaction times • high enantioselectivity, high yields • recovery of catalyst precursor by precipitation as the HCl salt

  31. Methodology • Corey-Bakshi-Shibata reduction(CBS reduction) Mechanism:

  32. Methodology • Corey-Bakshi-Shibata reduction(CBS reduction) Synthetic Applications:

  33. Methodology • Corey-Bakshi-Shibata reduction(CBS reduction) Synthetic Applications:

  34. Publication/Syntheses Enantioselective Total Synthesis of Aspidophytine J. Am. Chem. Soc. 1999, 121, 6771-6772

  35. Publication/Syntheses Enantioselective Total Synthesis of Aspidophytine J. Am. Chem. Soc. 1999, 121, 6771-6772 Leimgruber-Batchoindole synthesis

  36. Leimgruber-Batchoindole synthesis

  37. Leimgruber-Batchoindole synthesis

  38. Publication/Syntheses Enantioselective Total Synthesis of Aspidophytine J. Am. Chem. Soc. 1999, 121, 6771-6772

  39. Ireland-Claisen rearrangement

  40. Publication/Syntheses Enantioselective Total Synthesis of Aspidophytine (a) CH3CN, 23 °C, then TFAA, 0 °C, then NaBH3CN, 23 °C, 66%. J. Am. Chem. Soc. 1999, 121, 6771-6772

  41. Publication/Syntheses Enantioselective Total Synthesis of Aspidophytine (b) NaOH, EtOH, 75 °C, 24 h, 88%. (c) K3Fe(CN)6, NaHCO3, t-BuOH-H2O 1:2, 92%. (d) OsO4 (1 equiv), DMAP (2 equiv), t-BuOH/H2O (1:1), then NaSO3. (e) Pb(OAc)4, AcOH, CH2Cl2, -20 °C, 71% for two steps. (f) KHMDS, THF, -78 °C, then PhNTf2, -78 °C, 54%. (g) Pd(PPh3)4 (0.2 equiv), Bu3SnH (8 equiv), THF, 23 °C, 1 h, 86%. J. Am. Chem. Soc. 1999, 121, 6771-6772

  42. Publication/Syntheses Total Synthesis of aegiceradienol J. Am. Chem. Soc. 1999, 121, 9999-10003

  43. Publication/Syntheses Total Synthesis of aegiceradienol J. Am. Chem. Soc. 1999, 121, 9999-10003

  44. Publication/Syntheses Total Synthesis of aegiceradienol Brook rearrangement JACS. 1999, 121, 9999-10003

  45. Publication/Syntheses Brook rearrangements Mechanism: J. Am. Chem. Soc. 1999, 121, 9999-10003

  46. Publication/Syntheses Total Synthesis of aegiceradienol J. Am. Chem. Soc. 1999, 121, 9999-10003

  47. Publication/Syntheses Total Synthesis of Antheliolide A JACS, 2006, 128, 14050-14052 doi: 10.1021/ja066336b

  48. Publication/Syntheses Total Synthesis of Antheliolide A (b) KH, THF, -40 °C, 30 min; then Bu3SnCH2I at -40 °C; 0 °C, 16 h; (c) n-BuLi, THF, -78 °C, 3 h (61% from 4) (a) 2-equiv t-BuLi, 2, Et2O, -78 °C; -20 °C, 6 h; then 3, -78 °C, 2 h; (90%)

  49. Publication/Syntheses Total Synthesis of Antheliolide A Org.Lett.2002, 4, 2441-2443

  50. Publication/Syntheses Total Synthesis of Antheliolide A

More Related