1 / 20

Introducción a la Inferencia Estadística

Introducción a la Inferencia Estadística. Tema 4 : Contrastes de Hipótesis Paramétricas. Prof. Rosario Martínez Verdú. TEMA 4: CONTRASTES DE HIPÓTESIS PARAMÉTRICAS. 1. Planteamiento general de la contrastación de hipótesis estadísticas. 2. Contrastes de hipótesis bilaterales.

perry
Download Presentation

Introducción a la Inferencia Estadística

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introducción a la Inferencia Estadística Tema 4: Contrastes de Hipótesis Paramétricas Prof. Rosario Martínez Verdú

  2. TEMA 4: CONTRASTES DE HIPÓTESIS PARAMÉTRICAS 1. Planteamiento general de la contrastación de hipótesis estadísticas. 2. Contrastes de hipótesis bilaterales. 3. Contrastes de hipótesis unilaterales. Bibliografía específica Tema 4: - NEWBOLD, P. (1997). Estadística para los Negocios y la Economía. Madrid: Prentice Hall. 4ª Edición. Capítulo 9. - NEWBOLD, P. y otros (2008). Estadística para Administración y Economía. Madrid: Pearson-Prentice Hall. 6ª Edición. Capítulo 10 y Capítulo 11 apartados 1 a 4. - ESTEBAN GARCÍA, J. y otros: Curso Básico de Inferencia Estadística. Reproexpres Ediciones, Valencia, 2008. Tema 6 y y Tema 7 apartados 1 a 4. - LIND D.A y otros. Estadística Aplicada a los Negocios y la Economía. Ed. McGraw Hill, México, (13ª Edición). Capítulos 10 y 11. - MURGUI, J.S. y otros (2002). Ejercicios de Estadística. Economía y Ciencias Sociales. Valencia: Tirant lo Blanch. Capítulo 8 apartados 2 y 3 y Capítulo 9 apartados 1 a 3.

  3. 1) Planteamiento general de la contrastación de hipótesis estadísticas Objetivos del apartado: • Comprender los conceptos de hipótesis nula y alternativa. • Conocer los tipos de hipótesis estadísticas y de contrastes. • Saber formular las hipótesis y tomar una decisión en base a una prueba estadística o test. • Medir la fiabilidad de una prueba estadística o test en base a los errores de tipo I y de tipo II. • Comprender los conceptos de nivel de significación  y de potencia de un test estadístico.

  4. ¿Qué es una hipótesis? • Una afirmación o suposición sobre la población, principalmente acerca del valor de un parámetro : • Valor de la Media de la Población μ • Valor de la Varianza de la Población σ2 • Valor de la Proporción poblacional p en una Bernoulli • Ejemplos de hipótesis sobre parámetros: • 1) Población X: peso paquetes de cereal, en gramos. El peso medio de los paquetes de cereal es de 500 gramos. (μ=500) • 2) Población con distribución Bernoulli X: si un hogar tiene o no problemas para llegar a fin de mes. El porcentaje de hogares con problemas para llegar a fin de mes es del 45% (p=0,45)

  5. ¿Qué es un contraste de hipótesis? Es un procedimiento, basado en la evidencia que nos proporciona la muestra y en una prueba o test estadístico, usado para tomar una decisión acerca de la hipótesis. Se trata de determinar la validez o no validez de esa hipótesis. Si esa hipótesis se puede aceptar (no rechazar) o rechazar como válida. Esta hipótesis se llama hipótesis nulaH0 y se contrasta frente a una hipótesis alternativa H1.

  6. TIPOS DE HIPÓTESIS • Simples: parámetro  toma un único valor.H0:μ=500 ó H0:p=0,45 • Compuestas: parámetro  toma distintos valores. • Bilaterales: H1: μ500 ó H1:p0,45 • Unilaterales: H1: μ>500 ó H1: μ<500 H1:p>0,45 ó H1: p<0,45 TIPOS DE CONTRASTES • H0 y H1 simples (no es lo habitual) H0:μ=500 H1:μ=405 • H0 simple y H1 compuesta y bilateral→Contraste Bilateral (tema 4.2) • H0 simple y H1 compuesta y unilateral→Contraste Unilateral (tema 4.3) • H0 y H1 compuestas y unilaterales→Contraste Unilateral (tema 4.3)

  7. Hipótesis nula Ho Es la que contrastamos, es la más simple de las dos hipótesis. Siempre hay una igualdad: = ,  ,  Los datos pueden refutarla. No debería ser rechazada sin una gran evidencia en contra. Supondremos que es cierta a no ser que se pruebe lo contrario. Hip. Alternativa H1 Es lo opuesto de la H0 No hay igualdad: suele haber  , > , < Los datos pueden mostrar evidencia a favor. No debería ser aceptada sin una gran evidencia a favor. Ejemplo 1) peso medio paquetes de cereales Ejemplo 2) % hogares que no llegan a fin de mes

  8. Para resolver el contraste y tomar una decisión respecto a la H0 nos vamos a basar en: • La información que nos proporciona una muestra (es la única evidencia que tenemos de la población). • Una prueba o test estadístico, basado en un estadístico muestral del tema 2. En base a este estadístico de prueba y a su distribución de probabilidad se establece una regla de decisión que nos indica cuando debe rechazarse o aceptarse la HO. Se establecen dos regiones: • La región de Rechazo o región crítica: si el valor del estadístico está en esta región entonces se Rechaza la H0. • La región de Aceptación: si el valor del estadístico está en esta región entonces se Acepta la H0. • Tomar una decisión respecto a la H0 en base a un test y con la información parcial de la muestra no es proceso fiable al 100% y cabe la posibilidad de cometer errores.

  9. Tipos de error al contrastar hipótesis

  10. Tipos de error al contrastar hipótesis

  11. Tipos de error al contrastar hipótesis

  12. Tipos de error al contrastar hipótesis

  13. Tipos de error al contrastar hipótesis

  14. La fiabilidad de un test depende de lo pequeños que sean las probabilidades de los errores α y β. b a • Como los dos errores no se pueden minimizar a la vez, hay que controlar o fijar uno de los dos errores. Lo usual es controlar la probabilidad del error de tipo I α, ya que este error se considera el más grave de cometer de los dos. • Se llama nivel de significaciónα al mayor permitido o tolerado para la probabilidad del error de tipo I. Es el valor que se fija para α. No se puede tener todo: • Para un tamaño muestral fijo, no se pueden reducir a la vez ambos tipos de error. Si ↓α entonces ↑β y viceversa. Nos determina un test concreto Resulta un valor concreto para β Se fija nivel de significación

  15. Riesgos al tomar decisiones Analogía con un juicio: Se juzga a un individuo por la presunta comisión de un delito • H0: Hipótesis nula • Acusado inocente • H1: Hipótesis alternativa • Acusado culpable • Los datos pueden refutarla • La que se acepta si las pruebas no indican lo contrario • Rechazarla por error tiene graves consecuencias No debería ser aceptada sin una gran evidencia a favor. • Rechazarla por error tiene consecuencias consideradas menos graves que la anterior

  16. Tipos de error al tomar una decisión

  17. EJEMPLO 2:Conductor decide siefectúa o no un adelantamiento • H0: No adelantar ya que cree que no hay tiempo • H1: Adelantar ya que cree que hay tiempo

  18. Procedimiento a seguir en un Contraste de Hipótesis:

  19. EJEMPLO CONTRASTES DE HIPÓTESIS PARAMÉTRICAS Sea Población X: peso de los paquetes de cereal, en gramos. X~N( , 2=100) Muestra: (x1, x2,...., xn) m.a.s. n=16 Se pretende contrastar las siguientes hipótesis: Ho:  = 500 →afirmación del fabricante H1:  = 495 →opinión organización de consumidores Para resolver el contraste se proponen tests basados en el estadístico y definidos mediante su región crítica o de rechazo: Rechazar Ho si: Cada posible valor de k es un test distinto, ¿cómo elegir un test concreto?

  20. Alpha=α Beta=β

More Related