1 / 20

Jaderné transmutace aneb budeme spalovat jaderný odpad pomocí zařízení s urychlovačem?

Jaderné transmutace aneb budeme spalovat jaderný odpad pomocí zařízení s urychlovačem?. „Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu jedinou správnou cestu a nalezli to nejlepší řešení našich problémů"

peta
Download Presentation

Jaderné transmutace aneb budeme spalovat jaderný odpad pomocí zařízení s urychlovačem?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Jaderné transmutaceanebbudeme spalovat jaderný odpad pomocí zařízení s urychlovačem? „Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu jedinou správnou cestu a nalezli to nejlepší řešení našich problémů" Albert Einstein Vladimír Wagner Ústav jaderné fyziky AVČR, 250 68 Řež, E_mail: wagner@ujf.cas.cz, WWW: http://hp.ujf.cas.cz/~wagner/ 1. Úvod 2. Klasická jaderná energetika 2.1 Klasické reaktory 2.2 Množivé (rychlé) reaktory 2.3 Jaderný odpad 2.4 Přepracování, přechodná a trvalá úložiště 3. Jak transmutovat dlouhodobé radioaktivní izotopy? 3.1 Jak transmutovat prvky 3.2 Tříštivé reakce 3.3 Urychlovačem řízený jaderný transmutor 3.4 Výhody a nevýhody • 4. Experimentální studie • 4.1 Co, jak, kdy, kde řešit? • 4.2 Jak měřit neutrony? • 4.3 Aktivační detektory • 4.4 Příklady experimentů • 5. Závěr

  2. Klasické jaderné reaktory Štěpná reakce- štěpení jádra samovolné nebo po získání energie - obvykle se dodá energie záchytem neutronu - doprovázena vznikem neutronů s energiemi v oblasti jednotek MeV ( 2 - 3 neutrony na štěpení) (část hned – část zpožděná) Řetězová štěpná reakce: Štěpení nuklidů 235U, 239Pu ... záchytem neutronu 235U + n → 236U*: 85 % - štěpení 15 % - emise fotonu Velmi vysoké hodnoty účinných průřezů záchytu neutronů pro malé energie neutronů (10-2 eV) Nutnost zpomalování neutronů - moderátor Štěpení - vznik štěpných produktů Záchyt  emise fotonu  rozpad beta - vznik transuranů • Multiplikační faktor k - počet neutronů následující generace • neutronů produkovaných na jeden neutron předchozí generace • k < 1 podkritický systém • k = 1 kritický systém • k > 1 nadkritický systém Jaderná elektrárna Indian point (USA)

  3. Jaderný reaktor Vnitřek reaktoru při výměně paliva Dukovany – reaktorový sál Regulační, kompenzační a bezpečnostní tyče Palivo:1) přírodní uran - složen z 238U a jen 0.72 % 235U 2) obohacený uran - zvýšení obsahu 235U na 3-4% (klas.re.) T1/2(238U) = 4,51·109 r, T1/2(235U) = 7,13 ·108 r většinou ve formě UO2 Důležitý odvod tepla (voda) V roce 2001 (podle MAAE): 438 energetických reaktorů výkon 353 GWe produkce 16 % elektřiny celková provozní zkušenost:> 10 000 reaktorroků Elektrárna Diablo Canyon USA

  4. Nemoderované neutrony→ nutnost vysokého obohacení uranu 20 - 50 % 235U (ekvivalentně 239Pu) Množivé (rychlé) reaktory Produkce 239Pu: 238U + n → 239U(β-) + γ → 239Ne (β-)→239Pu Z 239Pu více neutronů (3 na jedno štěpení) → produkce více plutonia než se spotřebuje (plodivá zóna) Vysoké obohacení → vysoká produkce tepla →nutnost výkonného chlazení → roztavený sodík (teplota 550 oC) Doba života generace rychlých neutronů velmi krátká → větší role zpožděných neutronů při regulaci Elektrárny: Phenix - 250 MWe a Superphenix 1200 MWe (Francie) Rychlý množivý reaktor v Monju (Japonsko) – 280 MWe

  5. Jaderný odpad - vyhořelé palivo Složení:96 % uran (~1% 235U) 1 % transurany 3 % štěpné produkty (stabilní, krátkodobé, dlouhodobé) Některé dlouhodobé radioaktivní štěpné produkty: 99Tc (2.1105 let), 129I (1.57107 let), 135Cs (2.3106 let) Dlouhodobé transurany: 237Np (2.3106 let), 239Pu (2.3106 let), 240Pu (6.6103 let), 244Pu (7.6107 let),243Am (7.95103 let) Roční produkce jaderného odpadu ve Francii (75% energie): Vysoce aktivní (1000 Mbq/g) : 100 m3Středně aktivní (1 Mbq/g) : 10000 m3 Přechodné uložení - důležitý odvod tepla při počáteční fázi (vodní bazény) Přepracování vyhořelého paliva Zpracování a uložení jaderného odpadu Vnitřek reaktoru při výměně paliva Testy vyhořelého paliva (Monju Výměna paliva v reaktorů (USA)

  6. Přepracování, přechodná a trvalá úložiště Přechodná úložiště: a) mezisklady - chladnutí vyhořelého paliva b) přechodná - rozpad krátkodobějších izotopů po 40 letech hlavně 90Sr (28 let) a 137Cs (30 let) a dlouhodobé transurany Přepracování vyhořelého paliva - MOX Rizika: manipulace s vysoce radioaktivním materiálem možnost získání plutonia zneužitelného k výrobě bomby Mokrý mezisklad ve Francii Přepracování vyhořelého paliva, olovnatého sklo - stínění záření gama Elektrárna Fermi 1 (USA)

  7. Jaderné reaktory čtvrté generace Studie šesti různých nových typů reaktorů, čtyři jsou množivé a jen dva jsou klasické Hlavní úkoly: 1) Využít veškerý potenciál jaderného paliva 2) Snížit množství jaderného odpadu na minimum 3) Zvýšit bezpečnost na maximum

  8. Jak transmutovat nuklidy V jaderných reakcích vznikají → jaderné reakce je mohou přeměňovat Různé typy reakcí: Reakce neutronů s jádry Reakce protonů s jádry Fotojaderné reakce Reakce s jinými částicemi a jádry Velmi výhodné reakce s neutrony 1) Dosažení vysoké efektivity transmutace(vysoké pravděpodobnosti reakce s neutronem) → nutnost velmi intenzivního pole neutronů1016 neutronů cm-2s-1 (klasický reaktor ≤ 1014 neutronů cm-2s-1) 2) Vysoká závislost pravděpodobnosti reakce na energii neutronů → nutnost širokého energetického rozsahuneutronů Efektivní zkracování doby přeměny radioaktivních nuklidů: (σ – účinný průřez reakce Φ – tok neutronů)

  9. Tříštivé reakce jako intenzivní zdoj neutronů Reakce protonu z vysokou energií ( >100 MeV ) s jádry Velmi intenzivní zdroj neutronů – lze dosáhnout až 1016n/cm2s Přesně to potřebujeme pro efektivní transmutaci Tři etapy tříštivé reakce: 1) Vnitrojaderná kaskáda - nalétávající proton vyráží v nukleon-nukleonových srážkách nukleony z vysokou energií 2) Předrovnovážná emise- výlet nukleonů s vyšší energií z jádra ještě před nastolením tepelné rovnováhy 3) Vypařování neutronů nebo štěpení jádra – jádro v tepelné rovnováze se zbavuje přebytečné energievypařováním neutronů s energií okolo 5 MeV. Neu- trony vypařují i štěpné produkty Vysokoenergetické nukleony vzniklé v etapě vnitrojaderné kaskády mohou způsobit další tříštivou reakci - hadronová sprška

  10. Programy simulující produkci neutronů a jejich transport • založeny na matematické metodě Monte Carlo • využívají různé fyzikálnímodely tříštivých reakcí a knihoven účinných průřezů reakcí neutronů s jádry • Příklad: LAHET {Los Alamos High Energy Transport} - průběh tříštivé reakce, transport neutronů nad 20 MeV  MCNP {Monte Carlo Code for Neutron and Photon Transport} • nejnovější: MCNPX {Monte Carlo N-Particle Transport Code} - spojuje přednosti LAHETu a MCNP – knihovny účinných průřezů neutronů až po 150 MeV • potřeba jejich testování srovnáním s experimentálními daty

  11. Urychlovačem řízený jaderný transmutor Z čeho se skládá: Urychlovač protonů - energie 100 - 1000 MeV, Intenzita = 20 - 100 mA Terč - olovo, wolfram … Nádoba obsahující systém jaderného odpadu, moderátoru Nutnost separace stabilních a krátkodobých izotopů • Základní vlastnosti: • Využívá tříštivých reakcí • 2) Velmi vysoká hustota neutronů • 1016 n/(cm2s)→ efektivní transmutace • 3) Podkritický režim provozu • 4) Produkce neutronů ve velmi • širokém rozmezí energií Schéma koncepce urychlovačem řízeného jaderného transmutoru

  12. Výhody a nevýhody urychlovačem řízených transmutorů Výhody: 1) Podkritický systém, vnější zdroj neutronů → nemůže dojít k nekontrolované řetězové reakci, při poruše se systém zastaví 2) Vysoká hustota neutronů → efektivní transmutace a štěpení 3) Široký rozsah energie neutronů → možnost výběru nejefektivnější oblasti pro dané nuklidy 4) Malá citlivost ke složení spalovaného odpadu 5) Likvidace radioaktivního odpadu i zdroj energie Nevýhody: 1) Nutnost průběžné jaderněchemické separace dlouhodobých nuklidů od krátkodobých a stabilních → radiační riziko pro personál 2) Funguje jen velké zařízení (nemožnost postavení malého prototypu) → velký důraz na modelování, předprojektové a projektové studie 3) Otázka přijatelnosti pro veřejnost - jako každé jaderné zařízení +

  13. Co, jak, kdy, kde řešit Technologické: 1) Studie zdrojů neutronů založených na tříštivých reakcích 2) Studie okolo rychlých reaktorů 3) Studie jaderně chemických metod separace 4) Studie odvodu tepla, radiačního poškození, materiálové studie Studie tříštivých reakcí a produkce neutronů: 1) Studie účinných průřezů a produktů tříštivých reakcí na tenkých terčích 2) Studie účinných průřezů jednotlivých reakcí neutronů na tenkých terčích, hlavně pro vyšší energie → vypracování co nejpřesnějších knihoven účinných průřezů a modelů tříštivých reakcí Studie produkce neutronů na tlustých terčích a jejich transportu: 1) Studie neutronového pole v různých místech kolem i uvnitř terče a v různých místech komplikovaných sestav 2) Studie transmutací radioaktivních izotopů v různých sestavách → vypracování programu umožňující přesně simulovat a projektovat různé sestavy Je třeba i pro oblast vyšších energií neutronů a jejich vysoké hustoty dosáhnout přesnosti standardní pro klasické reaktory. Experimentální zařízení v Los Alamos

  14. Jak detekovat neutrony Neutrony: neutrální silně interagující částice Nutná reakce a předání energie nabitým částicím nebo fotonům Problém s určením energie neutronů – při většině procesů se předává jen část energie Používané reakce: 1) rozptyl na protonech – detekují se protony 2) (n,γ), (n,p), (n,d), (n,α) reakce – detekce vzniklých částic 3) (n,γ), (n,p), (n,d), (n,α) reakce– detekce produkovaných izotopů pomocí charakteristických gama doprovázejících rozpad beta 4) tříštivé reakce – detekce hadronové spršky (vysoké energie) 1) a 2) Klasická detekce nabitých částic pomocí scintilačních, dráhových …. detektorů 3) Následné měření záření gama metodami jaderné spektroskopie Přesné měření energie pomocí doby letu

  15. Příklady experimentů v SÚJV Dubna Studium produkce neutronů na tlustých terčích Nuclotron (vpravo) Fázotron (dole) v SÚJV Dubna • Využití urychlovačů v SÚJV Dubna: • Synchrofázotron Ep = 500 MeV až 7 GeV, slabá fokusace) • Nuklotron Ep = 500 MeVaž 5 GeV • Fázotron Ep = 660 MeV, proudy I = 1 μA Tlusté olověné a wolframové terče, různé typy moderátorů, uranový blanket, různé vzorky transmutovaných materiálů Svazek: protony s energií 885 MeV Konkrétní příklad: Olověný terč: průměr 9.8 cm tloušťka 50 cm Ukázka olověného terče a uchycení aktivačních detektorů (fólií) pro experimenty při 1.3 a 2.5 GeV

  16. Složitější systém olověného terče a uranového blanketu Olověný terč a blanket s tyčí s přírodního uranu (208 kg) Vzorky a měřící detektory umístěny okolo i uvnitř sestavy Stínění pomocí bedny naplněné polyetylénem Různá energie protonů z urychlovače 0,5 – 3,0 GeV Cíle: 1) Měření toků a spekter neutronů v různých místech sestavy pro srovnání s modelovými výpočty 2) Transmutace radioaktivních materiálů v různých místech sestavy (vzorky materiálu z jaderného odpadu) 3) Materiálové testy, měření produkovaného tepla

  17. Určení toku neutronů aktivační metodou Použivané aktivační folie: Al, Au, Bi, Co, Cu Příklady prahových reakcí: 197Au(n,2n)196Au 197Au(n,4n)194Au 27Al(n,α)24Na Příklad zpracování linek spektra folií Al a Bi pro určení intenzity gama linky: → počtu aktivovaných jader → neutronového toku Záření gama je úměrné toku neutronů s energií vyšší než prahová Měření aktivity záření gama po- mocí germaniových detektorů:

  18. Příklad experimentálních výsledků a srovnání s modelem 1) Jednoduchý olověný terč Příklad srovnání experimentálních a nasimulovaných hodnot produkce radioaktivních jader podél olověného terče (svazek Ep=885 MeV) Příklad simulací: vliv protonů na produkci radioaktivních jader ve fóliích podél terče (zlom v místě zastavení 885 MeV protonů v olovu) Experiment s tlustým olověným terčem D = 9,8 cm a L = 50 cm Ep= 885 MeV

  19. Příklad experimentálních výsledků a srovnání s modelem 2) Soustava olověného terče a blanketu z přírodního uranu Závislost poměru produkce daného izotopu na začátku a na konci terče na prahové energii reakce  „Tvrdnutí“ spektra směrem ke konci terče Rozložení produkce izotopu (neutronů s danou energíí podél terče)

  20. Závěr Možnost využití tříštivých reakcí k spalování jaderného odpadu Možný přínos: 1) Možnost štěpení všech izotopů uranu a transuranů 2) Alespoň částečná transmutace dlouhodobě radioaktivních štěpných produktů 3) Podkritický systém Nutnost řady studií: 1) Technologických 2) Studia reakcí neutronů a tříštivých reakcí Nutnost získání přesných simulačních programů pro projektování → experimentální jednoduchých i složitějších sestav pro srovnávací studie simulačních programů Jaderné transmutory: 1) Co nejefektivnější využití jaderného paliva 2) Co největší redukce jaderného odpadu Výstavba demonstrační jednotky ADTT v LANL (USA)(využití 800 MeV protonů I = 1 mA pro H+ a 100 mA pro H-) Možná budoucí efektivní jaderná energetika - kombinace klasických, rychlých jaderných reaktorů a transmutorů řízených urychlovačem

More Related