470 likes | 718 Views
4 th AMGP/AAPG International Conference Veracruz, Mexico Invited Address: November 6, 2001 Fractures, Salt, Seismic and Ice: Exploiting New Technologies for America’s Natural Gas Energy Future Scott W. Tinker Bureau of Economic Geology The University of Texas at Austin. Acknowledgments.
E N D
4th AMGP/AAPG International Conference Veracruz, Mexico Invited Address: November 6, 2001 Fractures, Salt, Seismic and Ice: Exploiting New Technologies for America’s Natural Gas Energy Future Scott W. Tinker Bureau of Economic GeologyThe University of Texas at Austin
Acknowledgments • AMGP/AAPG • BEG Scientists and Staff • Dr. Eugene M. Kim
Session Themes • Natural Gas Future • Importance of Seismic • Unconventional Sources • Unconventional Approaches • Thin beds • Anomalous pressure • Geochemistry • Rocks
Three Main Points Energy consumption in the United States and the world has followed a very predictable “decarbonization” trend. North American energy demand will be increasingly satisfied by natural gas. Deep water and unconventional sources of natural gas will be major production components, and the southwest United States and Mexico will play a dominant role. Research and technology such as fracture characterization and modeling, advanced seismic analysis, and salt modeling and prediction will improve exploration and development success in the Gulf of Mexico and for unconventional natural gas.
Wood Hydrogen 100 Solids Gases 80 Nonsustainable Economic Growth Sustainable Economic Growth Liquids Coal 60 Percentage of total market Arab Oil Embargo WW II WW I Oil and natural gas liquids 40 “City Gas” hydrogen Petroleum oil Whale oil Methane 20 1850 1900 1950 2000 2050 2100 Year 0 World Energy Consumption QAc9841c after Hefner, 1993
100 Supply Price Policy Technology 80 Solids 1970 60 Percentage of total market 1970 Forecast Gases, Nuclear, Renewables 40 Liquids 20 1850 1900 1950 2000 2050 2100 0 Year QAc9841c U.S. Energy Consumption 1970
100 Gas Price Oil Price 80 Solids Supply Price Policy Technology 60 Percentage of total market Gases, Nuclear, Renewables 40 20 Liquids 1850 1900 1950 2000 2050 2100 0 Year QAc9841c EIA Production Data U.S. Energy Consumption 1970
100 10 90 20 80 30 l 1975 l 1910 70 l 1980 l 1915 l 1985 40 l 1990 l 1920 l 1995 60 l 1925 l 2000 l 1930 50 l 1935 50 l 1940 l 1945 l 60 l l l l l l 1950 40 l l l 1955 l l l l l l l 1960 70 l l l 1965 l l 30 l l 1970 l l l 80 l 20 l l l 90 l l 10 l l 100 l l l l l l l l l l l l 100 90 80 70 60 50 40 30 20 10 U.S. Energy Consumption Liquids (Oil) • Methane, Hydrogen • (Nuclear, Renewables) • Efficiency • Economic Stability • National Security • Environmental Impact • Methane Abundant • Hydrogen Sustainable l Solids (Wood, Coal) Gases (Natural Gas, Hydrogen, Nuclear, Renewables)
Btu Consumption EIA Forecast 160.00 140.00 Conservation 120.00 Coal, Wood, Waste 100.00 Oil U.S. Consumption (Btu) 80.00 Gas, Nuclear, Renewables 60.00 Total Consumption 8.00 40.00 6.00 Bbo 20.00 4.00 2.00 0.00 0.00 1950 1970 1990 2010 2030 2050 1 Quad ~ 1 Tcf Year U.S. Energy Consumption 50-Year Forecast EIA Historical Production Data
30,000 Deepwater+Subsalt Offshore L48 Unconventional Onshore 25,000 Shallow Offshore L48 Conventional Onshore 20,000 Annual Natural Gas Production (Bcf) 15,000 10,000 5,000 0 1949 1953 1957 1961 1965 1969 1973 1977 1981 1985 1989 1993 1997 2001 2005 2009 2013 Year U.S. Natural Gas Historical and Future Production Demand Tight Gas, Shale Gas, CBM EIA (1949-1990) and NPC (1991-2015)
Mexico Gas Production 2001 - 2010 (bcfd) 10 3.5 Tcf/yr 9 Demand 8 7 6 Investment Plans 5 4 3 Burgos Grijalva Delta Cantarell 2 Base 1 0 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Source: A. Guzman, 2001, HGS PEMEX E&P Planning
Natural Gas Production: Regions and Types
P r o d u c t i o n ( 1 9 9 8 ) T o t a l U S T o t a l ( T c f ) N o r t h A m e r i c a ( T c f ) Natural Gas
Unconventional versus Conventional Gas Reserves 70,000 Conventional 60,000 Unconventional 50,000 40,000 Reserves (Bcf) 30,000 20,000 10,000 0 1993 2009 1991 1995 1997 1999 2001 2003 2005 2007 2011 2013 2015 Southwest United States Natural Gas Resources Data Source: National Petroleum Council, 1999
“Unconventional” Gas Tight (Low Permeability) Shale Coalbed Methane Deep (>15,000 ft) Subsalt Gas Hydrates Ultra Deep Water
GRI DOE Impact of Natural Gas Research Tight Gas 4,000.0 3,500.0 3,000.0 2,500.0 2,000.0 Bcf 1,500.0 State of Texas Tight Gas Incentives 1,000.0 Federal Credit for Unconventional Gas 500.0 0.0 1970 1975 1980 1985 1990 1995 GRI, 1999, GRI’s Gas Resource Database. DOE personal communication.
Rocky Mountain Foreland (13.7 Tcf) Midcontinent (16.9 Tcf) Appalachian (18.3 Tcf) N Permian Basin (19.5 Tcf) Arkla-Tex (29.8 Tcf) 0 4 0 0 m i Texas Gulf Onshore (9.1 Tcf) 0 6 0 0 k m Q A c 9 7 1 5 c MAJOR PRODUCTIVE TIGHT GAS BASINS (Technically Recoverable Resources) San Juan (5.6 Tcf)* Data: NPC (2000), * Based on estimates of NPC (1993), San Juan Basin tight gas resource included with oil field reserve appreciation and new fields in NPC (2000)
Southwest RegionTexas Gulf Coast Onshore • High-permeability gas production • Tight gas development, especially along the Wilcox Lobo trend • Increase in drilling activity due to smaller reservoirs Data Source: National Petroleum Council, 1999
Southwest RegionSan Juan Basin • Fruitland coalbed methane formation • Mesa Verde tight gas • Drilling increase due to denser spacing Fruitland and Mesa Verde Data Source: National Petroleum Council, 1999
Southwest RegionPermian Basin • Deep and tight gas resources in Canyon Sand, Abo, and Morrow Data Source: National Petroleum Council, 1999
Southwest RegionArkla-East Texas • Conventional associated • Unconventional from tight gas and Devonian shale Data Source: National Petroleum Council, 1999
GRI Impact of Natural Gas Research Shale Gas 350.0 300.0 250.0 200.0 Bcf 150.0 100.0 DOE (1976-1992) 50.0 0.0 1980 1985 1990 1995 GRI, 1999, GRI’s Gas Resource Database. DOE personal communication.
M i c h i g a n A n t r i m ( 1 6 . 9 T c f ) A p p a l a c h i a n I l l i n o i s ( 2 3 . 4 T c f ) N e w A l b a n y ( 2 . 9 T c f ) Cincinnati N A r c h ( 2 . 2 T c f ) F t . W o r t h B a r n e t t S h a l e ( 7 . 2 T c f ) 0 4 0 0 m i 0 6 0 0 k m D a t a : N P C ( 2 0 0 0 ) Q A c 9 7 1 2 c MAJOR PRODUCTIVE DEVONIAN SHALE BASINS Technically Recoverable Resources
GRI DOE Impact of Natural Gas Research Coalbed Methane 1,200 1,000 Federal Alternative Fuels Production Credit for Unconventional Gas 800 $2 600 Bcf Wellhead Price ($/Mcf) 400 200 $1 0 1980 1985 1990 1995 GRI, 1999, GRI’s Gas Resource Database. DOE personal communication.
Powder River (24.0 Tcf) Uinta & Piceance (5.5 Tcf) Hanna-Carbon (4.4 Tcf) Northern Appalachian and PA Anthracite (10.6 Tcf) Raton-Mesa (3.7 Tcf) SW Coal Region (5.8 Tcf) San Juan (10.2 Tcf) Black Warrior (4.4 Tcf) N 0 4 0 0 m i 0 6 0 0 k m Alaska (Bering River, North Slope, Chignik and Herendeen Bay) (57.0 Tcf) D a t a : P G C ( 2 0 0 1 ) Q A c 9 7 1 4 c MAJOR PRODUCTIVE COALBED METHANE BASINS (Total Most Likely Resources)
Montana Folded Belt (5.2 Tcf) Wind River (5.0 Tcf) Greater Green River (8.4 Tcf) Appalachian (5.0 Tcf) San Joaquin (9.0 Tcf) Anadarko, Palo Duro (17.7 Tcf) N Permian (12.9 Tcf) LA, MS, AL Salt (15.8 Tcf) Louisiana Gulf Coast (14.5 Tcf) 0 4 0 0 m i Texas Gulf Coast (14.3 Tcf) 0 6 0 0 k m D a t a : P G C ( 2 0 0 1 ) Q A c 9 7 1 3 c MAJOR PRODUCTIVE DEEP (>15,000 FT) GAS BASINS (Total Most Likely Resources)
Pacific Slope (8.9 Tcf) N Louisiana Slope (12.4 Tcf) Texas Slope (4.3 Tcf) 0 4 0 0 m i 0 6 0 0 k m Eastern Gulf Slope (7.6 Tcf) Gulf of Mexico OCS (47.7 Tcf) D a t a : P G C ( 2 0 0 1 ) Q A c 9 7 1 6 c MAJOR PRODUCTIVE DEEP-WATER GAS BASINS (Total Most Likely Resources)
Natural Gas Opportunities in México Productive 1) Sabinas 2) Burgos 3) Veracruz 4) Macuspana 8 9 7 • Nonproductive • Mid - High Potential • 5) Sierra Madre Oriental • 6) Deep Gulf of México • Low Potential • 7) California • 8) Golfo de California • 9) Chihuahua 1 2 6 5 3 4 Source: A. Guzman, 2001, HGS PEMEX E&P Planning
Research & Technology: GOM and Unconventional Gas
Natural Gas Upstream Research & Technology • 3-D Matrix and Fracture Modeling & Simulation • Rock Physics • Salt Modeling and Characterization • High-Frequency Stratigraphy: Seismic & Outcrops • 4C 3D, 4D, and 9C 3D Seismic Data • Advanced Basin and Play Analysis • Visualization to Achieve Integration
Fractures F2 F1 10 m Frontier Sandstone, Wyoming Plan View Fracture Traces Air Photograph Weber Sandstone Plan View Fracture Traces CL Steve Laubach, FRAC, BEG
Fracture Strike Mapping Microfractures Predict Large Fractures Fracture Strike Laubach et al., 2000, The Leading Edge Laubach, 1997, AAPG Bulletin East Texas, Travis Peak Formation
Previously InvisibleMicrofractures Fracture Transmitted Light CL Match point Steve Laubach, FRAC, BEG
Fracture IntensityQuantitative Data for Mapping and Flow Modeling Fracture Intensity Marrett et al., 1999, Geology Stowell, 2000, SPE West Texas, Ozona Canyon
Rock Physics • BEG Austin Core Warehouse
Physical Models Salt Research Seismic Studies Field Studies Numerical Models Martin Jackson, AGL, BEG
3-D Seismic Attributes Charlie Kerans, RCRL, BEG
Jalapa Cardel Golfo de México Veracruz Lagarto Miralejos P.Oro T. Higueras 180Km² Cópite M.R.A. Córdoba 277 Km² Playuela M.Pionche Mecayucan 240 Km² Cocuite Angostura Tlacotalpan Estanzuela SÍSMICA 3D R.Pacheco Mirador Coapa San Pablo Gloria 280 Km² Veinte CAMPO DE GAS O ACEITE Nopaltepec Novillero 3-D Seismic Amplitude & Other Attributes Source: A. Guzman, 2001, HGS PEMEX E&P Planning
Targets Targets IVF IVF IVF IVF IVF IVF L1700 Relic delta Relic delta L1600 L1500 L1400 L1300 Bright spots Bright spots L1200 Target 3 Target 3 L1100 T100 T200 T300 T400 T500 T600 T700 T800 T900 T1000 T1100 T1200 T1300 Amplitude IVF Incised valley fill - + Seismic Deep Water AnalysisStratal Slicing Exposed shelf QAc6999c Lesli Wood, SGR, BEG
D i r e c t i o n o f w a v e p r o p a g a t i o n S V P a r t i c l e d i s p l a c e m e n t S H v e c t o r Z Z R e f l e c t e d r a y p a t h Z A X A X A X Q A b 9 1 4 5 ( b ) c 9C 3D Seismic Data P, SV, and SH P Z Z Z X X X Bob Hardage, EGL, BEG
F M I l o g f r a c t u r e a z i m u t h s I n t e r v a l 1 N 0 ° W E S V m a x i m u m 2 0 7 ° 9 0 r e f l e c t i v i t y C 1 1 8 0 ° S I n t e r v a l 2 N 0 ° l V e r t i c a l w e l N A z i m u t h d i r e c t i o n W E S u p e r b i n 2 7 0 ° 9 0 ° t 1 0 0 0 f 0 1 8 0 ° S 0 3 0 0 m 9C 3D Seismic Data Fracture Azimuth ° 0 ° 3 0 ° 6 0 ° 9 0 ° Q A c 8 4 3 1 c Bob Hardage, EGL, BEG
High-Frequency Stratigraphy ILRIS Laser Image
Summary U.S. energy demand will be increasingly satisfied by natural gas and eventually hydrogen. Deep water and unconventional sources of natural gas will be major production components, and the southwest United States and Mexico will play a dominant role. Research and technology such as fracture characterization and modeling, advanced seismic analysis, and salt modeling and prediction will improve exploration and development success in the GOM and for unconventional natural gas.
Thank you! Gracias!