470 likes | 585 Views
IXP Lab 2012: Part 3. Programming Tips. Outline. Memory Independent Techniques Instruction Selection Task Partition Memory Dependent Techniques Reducing Overhead Reduce the number of memory accesses Reduce average access latency Hiding Overhead. Memory Independent Techniques.
E N D
IXP Lab 2012: Part 3 Programming Tips
Outline • Memory Independent Techniques • Instruction Selection • Task Partition • Memory Dependent Techniques • Reducing Overhead • Reduce the number of memory accesses • Reduce average access latency • Hiding Overhead NCKU CSIE CIAL Lab
Memory Independent Techniques • Instruction Selection • General Coding Skill • Use Hardware Instruction • Task Partition • Multi-Processing • Context-Pipelining NCKU CSIE CIAL Lab
General Coding Skill • Remove loop • Shift Operation • Avoid using multiply and divide • Inline Function • __inline & __forceinline • Branch Prediction • Branch Prediction Penalty NCKU CSIE CIAL Lab
Hardware Instruction • POP_COUNT • FFS • Multiply • CRC • Hashing • CAM NCKU CSIE CIAL Lab
POP_COUNT--Brief • Population Count • Report number of bit set in a 32-bit register • 3 cycles latency • Example: • pop_count( 0x3121 ) = ? • 0011 0001 0010 0001 • Result = 5 NCKU CSIE CIAL Lab
POP_COUNT--Naïve Implementation unsigned int pop_count_for (unsigned int x) { unsigned int y=0; unsigned int i; for(i=0; i<32; i++) { if( (x&1)==1 ) y++; x=x>>1; } return y; } NCKU CSIE CIAL Lab
POP_COUNT--Faster Implementation unsigned int pop_count_agg(unsigned int x) { x -= ((x >> 1) & 0x55555555); x = (((x >> 2) & 0x33333333) + (x & 0x33333333)); x = (((x >> 4) + x) & 0x0f0f0f0f); x += (x >> 8); x += (x >> 16); return(x & 0x0000003f);} } Reference http://aggregate.org/MAGIC/ NCKU CSIE CIAL Lab
POP_COUNT--Hardware Instruction unsigned int pop_count_hardware(unsigned int x) { return pop_count (x); } NCKU CSIE CIAL Lab
POP_COUNT--Additional Information • Bitmap-RFC (Liu, TECS 2008) NCKU CSIE CIAL Lab
FFS • Find the first bit set in data and return its position • Example: • ffs ( 0x3121 ) = 0 • 0011 0001 0010 0001 • ffs ( 0x3120 ) = 5 • 0011 0001 0010 0000 • ffs ( 0x3100 ) = 8 • 0011 0001 0000 0000 NCKU CSIE CIAL Lab
Multiply • Specific Multiply Instruction • Multiply_24x8() • Multiply_16x16() • Multiply_32x32_hi() • Multiply_32x32_lo() NCKU CSIE CIAL Lab
CRC • 14 cycles latency • Example of CRC operation crc_write( 0x42424242); crc_32_be( source_address, bytes_0_3 ); crc_32_be( dest_address, bytes_0_3 ); … Cache_index = crc_read(); NCKU CSIE CIAL Lab
Hash • hash_48() • hash_64() • hash_128() • Example: SIGNAL sig_hash; hash48(data_out, data_in, count, sig_done, &sig_hash); __wait_for_all(&sig_hash); NCKU CSIE CIAL Lab
CAM--Brief • Content Addressable Memory • Each ME has 16 32-bit CAM entries • The CAM is private to other MEs • With lookup operation, each entries is searching in parallel • With a success lookup, the index of matched entries will be returned • Else, the index of entries to be replaced will be returned NCKU CSIE CIAL Lab
CAM--Structure • cam_lookup_t NCKU CSIE CIAL Lab
CAM--Usage cam_lookup_t cam_result; cam_result = cam_lookup( data ); if( cam_result.hit == 1 ) { Access Entry cam_result.entry_num; … } else { …… cam_write( cam_result.entry_num, data, 15 ); } NCKU CSIE CIAL Lab
Task Partition • Multi-Processing • More Computing Power • Easy to implement • Context-Pipelining • More Useable Resource • Hard to balance NCKU CSIE CIAL Lab
Memory Relative Techniques--Reducing Overhead • Reduce the number of memory accesses • Wide-word Accesses • Result Caches • Reduce average access latency • Multi-level Memory Hierarchy • Data Cache NCKU CSIE CIAL Lab
Wide-Word Accesses--Brief • Batch Access the needed data • Reduce the necessary accesses • Useful when the data stored contiguously NCKU CSIE CIAL Lab
Wide-Word Accesses--Usage (One Node per Access) __declspec(sram_read_reg) UINT32 A; SIGNAL sig_read; sram_read( &A, MEM_ADDR+(i*4), 1, sig_done, &sig_read); __wait_for_all( &sig_read ); Access A ...... ---------------------------------------------- Result: 8 Accesses are needed NCKU CSIE CIAL Lab
Wide-Word Accesses--Usage (Two Node per Access) __declspec(sram_read_reg) UINT32 A[2]; SIGNAL sig_read; sram_read( &A, MEM_ADDR+(i*8), 2, sig_done, &sig_read); __wait_for_all( &sig_read ); Access A ...... ---------------------------------------------- Result: 4 Accesses are needed NCKU CSIE CIAL Lab
Wide-Word Accesses--Usage (Four Node per Access) __declspec(sram_read_reg) UINT32 A[4]; SIGNAL sig_read; sram_read( &A, MEM_ADDR+(i*16), 4, sig_done, &sig_read); __wait_for_all( &sig_read ); Access A ...... ---------------------------------------------- Result: 2 Accesses are needed NCKU CSIE CIAL Lab
Wide-Word Accesses--Experiment • Platform: IXP2800 • Total Accesses: 8 LW (8*4 Byte) NCKU CSIE CIAL Lab
Wide-Word Accesses--Limitation • Data must be contiguous • Suitable for linear search • Not support random accesses • Number of Transfer Registers are fixed • Each thread has 16 read / write registers • The Tx-Regs may be reserved by others NCKU CSIE CIAL Lab
Resulting Cache--Brief • Caching the result of application • If same fields appear again, the cached result is returned • Memory accesses are reduced when cache hit. • Depends on temporal locality of the traffic NCKU CSIE CIAL Lab
Result Cache--IXP2400 • No hardware cache is supported in IXP2400 ME • Not easy to implement set-associative cache • Replacement policy will also be an overhead NCKU CSIE CIAL Lab
Result Cache--Design Consideration • Shared or Private Cache ? • Size of Cache ? • Works with specific Hardware ? • Miss penalty handling ? NCKU CSIE CIAL Lab
Result Cache--Example NCKU CSIE CIAL Lab
Multi-Level Memory Hierarchy--Brief • Reduce the average access latency • Number of accesses remained unchanged • If data can fit in faster memory, then do it NCKU CSIE CIAL Lab
Multi-Level Memory Hierarchy--Data Placement • Size smaller while read-only • Hard Code • Size smaller while need updating • Local Memory • Size larger • Scratchpad • Size largest • SRAM NCKU CSIE CIAL Lab
Multi-Level Memory Hierarchy--Packet Data Type • Packet related data • Temporary Data • Valid with specific packet • Local Memory • Flow related data • Related to specific flow • Spatial Locality • Wide-Word Access • Application related data • Valid with specific application • Temporal Locality • Result Cache NCKU CSIE CIAL Lab
Split-Cache (Z. Liu, IET-COM 2007) • Two separate hardware for application data and flow data NCKU CSIE CIAL Lab
Data Cache--Brief • Hardware Cache Mechanism that cached the data for packet processing • App-Cache • Flow-Cache • However, not supported by IXP2400 (Need additional hardware) NCKU CSIE CIAL Lab
Data Cache--CAM + Local Memory • CAM works with Local Memory acts like hardware cache • However, number of CAM entries is limited • Each CAM entry may co-worked with several Local Memory Cache entry NCKU CSIE CIAL Lab
Memory Relative Techniques--Hiding Overhead • Not really reduce the overhead, but overlapped it • Hardware Multi-Threading • Asynchronous Memory NCKU CSIE CIAL Lab
Hardware Multi-Threading • Swap out itself and let another thread to execute while access memory • Each thread kept its own set of registers, thus no stack are needed for thread swapping • Round Robin Scheduling • No thread preemptive NCKU CSIE CIAL Lab
Asynchronous Memory--Brief • Thread will not be blocked when issue a memory request • Thus, thread can issues multiple memory requests at a time NCKU CSIE CIAL Lab
Asynchronous Memory--Example (1 Issue) Read X __wait_for_all ( &sig_x ) Read Y __wait_for_all ( &sig_y ) // Use X and Y … NCKU CSIE CIAL Lab
Asynchronous Memory--Example (2 Issues) Read X Read Y __wait_for_all ( &sig_x, &sig_y ) // Use X and Y … NCKU CSIE CIAL Lab
Wide-Word Access + Multiple Issues NCKU CSIE CIAL Lab
Wide-Word Access +Multiple Issues (1LW, 2 Issue) NCKU CSIE CIAL Lab
Wide-Word Access +Multiple Issues (2LW, 2 Issue) NCKU CSIE CIAL Lab
Wide-Word Access +Multiple Issues (4LW, 2 Issue) NCKU CSIE CIAL Lab
Wide-Word Access +Multiple Issues (Experiment) NCKU CSIE CIAL Lab
Reference (1) • Jayaram Mudigonda, Harrick M. Vin, Raj Yavatkar, “Overcoming the memory wall in packet processing: hammers or ladders?”, Proc. ANCS 2005. • Duo Liu, Zheng Chen, Bei Hua, Nenghai Yu, Xinan Tang, “High-Performance Packet Classification Algorithm for Multireaded IXP Network Processor”, ACM TECS 2008. NCKU CSIE CIAL Lab
Reference (2) • Z. Liu, K. Zheng, B. Liu, “Hybrid cache architecture for high-speed packet processing”, IET-COM 2007. NCKU CSIE CIAL Lab