1 / 45

Fermi surface, pseudogap and superconductivity in the t-J model

Fermi surface, pseudogap and superconductivity in the t-J model. A. Ramšak a nd P. Prelovšek. Faculty of Mathematics and Physics ( Univ . of Ljubljana ) J. Stefan Institute, Ljubljana, Slovenia. &. t - J model. t - J Hamiltonian:. Green’s function s :. Spectral function s :.

Download Presentation

Fermi surface, pseudogap and superconductivity in the t-J model

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fermi surface, pseudogap and superconductivity in the t-J model A. Ramšak andP. Prelovšek Faculty of Mathematics and Physics (Univ. ofLjubljana) J. Stefan Institute, Ljubljana, Slovenia &

  2. t-Jmodel

  3. t-J Hamiltonian: Green’s functions: Spectral functions:

  4. doping-dependent hopping equations of motion for

  5. doping-dependent hopping equation of motion for ‘Self Consistent Born Approximation’: ; …..

  6. doping-dependent hopping equation of motion for SCBA decoupling

  7. doping-dependent hopping equation of motion for SCBA dynamical spin susceptibility

  8. SCBA q (0,) (, ) (0,0) (,0)

  9. (0,) (, ) (0,0) (,0)

  10. (0,) (, ) (0,0) (,0)

  11. Fermi surface Exact diag.: large Fermi surface One hole results: small Fermi surface (hole pockets)

  12. SCBA: 1 hole Fermi arcs?

  13. t’> 0 t’< 0

  14. Finite doping P. Prelovšek and A. Ramšak, Phys. Rev. B, 63, 180606(R) (2001)

  15. PG P. Prelovšek and A. Ramšak, Phys. Rev. B, 63, 180606(R) (2001)

  16. A - B C ? D Hole concentration versus chemical potential and the corresponding electron momentum distribution function nk. P. Prelovšek and A. Ramšak (2002).

  17. (, ) (A)ch=0.28 (0, ) (0, ) (, ) (0,0) nk (,0) (0,0) |nk| (,0)

  18. (, ) (B)ch=0.19 (0, ) (0, ) (, ) (0,0) nk (,0) (0,0) |nk| (,0)

  19. (, ) (C)ch=0.11 (0, ) (0, ) (, ) (0,0) nk (,0) (0,0) |nk| (,0)

  20. (, ) (D)ch=0.04 (0, ) (0, ) (, ) (0,0) nk (,0) (0,0) |nk| (,0)

  21. Aproximate analysis (0,) (, ) (0,0) (,0)

  22. (0, ) (0, 0) (, ) (,0)

  23. (0, ) (, ) (0,0) (,0)

  24. (0, ) (, ) (0,0) (,0)

  25. (0, ) (, ) (0,0) (,0)

  26. (0, ) (, ) (0,0) (,0)

  27. Pseudogap

  28. A. Ramšak, P. Prelovšek, and I. Sega (2001)

  29. QP P. Prelovšek and A. Ramšak(2002).

  30. A(k,) k kF /t

  31. Opening of the gap:

  32. Temperature dependence:

  33. Superconductivity extract Ramšak and Prelovšek, 2003

  34. Summary Fermi surface Pseudogap Superconductivity

More Related