1 / 14

A Superlattice model for superconductivity in the Borocarbides

A Superlattice model for superconductivity in the Borocarbides. Thereza Paiva M. El Massalami Raimundo R. dos Santos UFRJ. Borocarbides Model Transport properties Phase diagrams Conclusions. Borocarbides. Borocarbides. RT 2 B 2 C  1 RC layer T=Ni

bill
Download Presentation

A Superlattice model for superconductivity in the Borocarbides

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A Superlattice model for superconductivity in the Borocarbides Thereza Paiva M. El Massalami Raimundo R. dos Santos UFRJ

  2. Borocarbides • Model • Transport properties • Phase diagrams • Conclusions

  3. Borocarbides

  4. Borocarbides • RT2B2C  1 RC layer T=Ni R=Sc, Y, Ce, Dy, Ho, Er, Tm, Lu, U, Th  SUC coexistence SUC and MAG (all above but Lu) R= Yb  Heavy fermion • RTBC  2 RC layers T=Ni no SUC, no HF • T=Co singlelayer R=Lu, Tm, Er, Ho Dy, Gd, Ce no SUC • R=La singlelayer T=Nino SUC no MAG T=Pd, Pt SUC

  5. Model U<0 U=0 U<0 U=0 U<0 U=0         RT2B2C     RTBC U<0 U=0 U=0 U<0 U=0 U=0  T2B2 RC no f electrons  attractive sites

  6. Layering L0=1 and L0=2 Chemical Composition,  and U SUC Lanczos Method  Exact • Finite-sized sistemsno spontaneous symmetry breaking • One-dimensional systemno true LRO quasi-ordered statespower law decay of “SUC” correlations with distance • Extrapolations towards thermodynamic limit

  7. Transport properties Drude weight  ()=DC()+g() Charge gap  single particle excitations C= E(Nc,Ne+1)+E(Nc,Ne1) - 2E(Nc,Ne) C DC I 0 = 0 S 0  0 M = 0 0

  8. Charge Gap L0=1 =5/3 U=-4 Extrapolation with 1/NS C = 0  <  C  0     Gaussian fit to 2C/2 =2.7±0.6

  9. Drude Weight L0=1 =5/3 U=-4 Extrapolation with 1/NS2 (1/NS,ln NS) DC = 0   D DC  0   < D DSL/DH= 10-3 D=18±1 Exponential decay

  10. C(i,l) =½ < ci+l ci+l ci ci +HC > S-wave singlet correlation function =11/6 NS=24 U=-4  i------ l------ i+l i attractive site C(i,l= 2) =1 =2±1 D=7.0 ±0.5

  11. Phase Diagramfixed |U| Strong coupling  >> |U| >> 1 C=1 L0=1 C=1.33 L0=2 C

  12. Repeat the procedure L0=2 other 

  13. Phase Diagram  fixed  • =5/3 >C Reentrant SUC

  14. Conclusions • Balance between layering,chemical composition andSUC • SUClarger region for L0=1 than L0=2 • single layer material SUC • double layer material no SUC • Reentrant SUC

More Related